Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/gmmactiv.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/gmmactiv.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,77 @@ +function a = gmmactiv(mix, x) +%GMMACTIV Computes the activations of a Gaussian mixture model. +% +% Description +% This function computes the activations A (i.e. the probability +% P(X|J) of the data conditioned on each component density) for a +% Gaussian mixture model. For the PPCA model, each activation is the +% conditional probability of X given that it is generated by the +% component subspace. The data structure MIX defines the mixture model, +% while the matrix X contains the data vectors. Each row of X +% represents a single vector. +% +% See also +% GMM, GMMPOST, GMMPROB +% + +% Copyright (c) Ian T Nabney (1996-2001) + +% Check that inputs are consistent +errstring = consist(mix, 'gmm', x); +if ~isempty(errstring) + error(errstring); +end + +ndata = size(x, 1); +a = zeros(ndata, mix.ncentres); % Preallocate matrix + +switch mix.covar_type + +case 'spherical' + % Calculate squared norm matrix, of dimension (ndata, ncentres) + n2 = dist2(x, mix.centres); + + % Calculate width factors + wi2 = ones(ndata, 1) * (2 .* mix.covars); + normal = (pi .* wi2) .^ (mix.nin/2); + + % Now compute the activations + a = exp(-(n2./wi2))./ normal; + +case 'diag' + normal = (2*pi)^(mix.nin/2); + s = prod(sqrt(mix.covars), 2); + for j = 1:mix.ncentres + diffs = x - (ones(ndata, 1) * mix.centres(j, :)); + a(:, j) = exp(-0.5*sum((diffs.*diffs)./(ones(ndata, 1) * ... + mix.covars(j, :)), 2)) ./ (normal*s(j)); + end + +case 'full' + normal = (2*pi)^(mix.nin/2); + for j = 1:mix.ncentres + diffs = x - (ones(ndata, 1) * mix.centres(j, :)); + % Use Cholesky decomposition of covariance matrix to speed computation + c = chol(mix.covars(:, :, j)); + temp = diffs/c; + a(:, j) = exp(-0.5*sum(temp.*temp, 2))./(normal*prod(diag(c))); + end +case 'ppca' + log_normal = mix.nin*log(2*pi); + d2 = zeros(ndata, mix.ncentres); + logZ = zeros(1, mix.ncentres); + for i = 1:mix.ncentres + k = 1 - mix.covars(i)./mix.lambda(i, :); + logZ(i) = log_normal + mix.nin*log(mix.covars(i)) - ... + sum(log(1 - k)); + diffs = x - ones(ndata, 1)*mix.centres(i, :); + proj = diffs*mix.U(:, :, i); + d2(:,i) = (sum(diffs.*diffs, 2) - ... + sum((proj.*(ones(ndata, 1)*k)).*proj, 2)) / ... + mix.covars(i); + end + a = exp(-0.5*(d2 + ones(ndata, 1)*logZ)); +otherwise + error(['Unknown covariance type ', mix.covar_type]); +end +