Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/gbayes.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/gbayes.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,56 @@ +function [g, gdata, gprior] = gbayes(net, gdata) +%GBAYES Evaluate gradient of Bayesian error function for network. +% +% Description +% G = GBAYES(NET, GDATA) takes a network data structure NET together +% the data contribution to the error gradient for a set of inputs and +% targets. It returns the regularised error gradient using any zero +% mean Gaussian priors on the weights defined in NET. In addition, if +% a MASK is defined in NET, then the entries in G that correspond to +% weights with a 0 in the mask are removed. +% +% [G, GDATA, GPRIOR] = GBAYES(NET, GDATA) additionally returns the data +% and prior components of the error. +% +% See also +% ERRBAYES, GLMGRAD, MLPGRAD, RBFGRAD +% + +% Copyright (c) Ian T Nabney (1996-2001) + +% Evaluate the data contribution to the gradient. +if (isfield(net, 'mask')) + gdata = gdata(logical(net.mask)); +end +if isfield(net, 'beta') + g1 = gdata*net.beta; +else + g1 = gdata; +end + +% Evaluate the prior contribution to the gradient. +if isfield(net, 'alpha') + w = netpak(net); + if size(net.alpha) == [1 1] + gprior = w; + g2 = net.alpha*gprior; + else + if (isfield(net, 'mask')) + nindx_cols = size(net.index, 2); + nmask_rows = size(find(net.mask), 1); + index = reshape(net.index(logical(repmat(net.mask, ... + 1, nindx_cols))), nmask_rows, nindx_cols); + else + index = net.index; + end + + ngroups = size(net.alpha, 1); + gprior = index'.*(ones(ngroups, 1)*w); + g2 = net.alpha'*gprior; + end +else + gprior = 0; + g2 = 0; +end + +g = g1 + g2;