Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/demhmc3.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/demhmc3.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,135 @@ +%DEMHMC3 Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. +% +% Description +% The problem consists of one input variable X and one target variable +% T with data generated by sampling X at equal intervals and then +% generating target data by computing SIN(2*PI*X) and adding Gaussian +% noise. The model is a 2-layer network with linear outputs, and the +% hybrid Monte Carlo algorithm (with persistence) is used to sample +% from the posterior distribution of the weights. The graph shows the +% underlying function, 300 samples from the function given by the +% posterior distribution of the weights, and the average prediction +% (weighted by the posterior probabilities). +% +% See also +% DEMHMC2, HMC, MLP, MLPERR, MLPGRAD +% + +% Copyright (c) Ian T Nabney (1996-2001) + + +% Generate the matrix of inputs x and targets t. +ndata = 20; % Number of data points. +noise = 0.1; % Standard deviation of noise distribution. +nin = 1; % Number of inputs. +nout = 1; % Number of outputs. + +seed = 42; % Seed for random number generators. +randn('state', seed); +rand('state', seed); + +x = 0.25 + 0.1*randn(ndata, nin); +t = sin(2*pi*x) + noise*randn(size(x)); + +clc +disp('This demonstration illustrates the use of the hybrid Monte Carlo') +disp('algorithm to sample from the posterior weight distribution of a') +disp('multi-layer perceptron.') +disp(' ') +disp('A regression problem is used, with the one-dimensional data drawn') +disp('from a noisy sine function. The x values are sampled from a normal') +disp('distribution with mean 0.25 and variance 0.01.') +disp(' ') +disp('First we initialise the network.') +disp(' ') +disp('Press any key to continue.') +pause + +% Set up network parameters. +nhidden = 5; % Number of hidden units. +alpha = 0.001; % Coefficient of weight-decay prior. +beta = 100.0; % Coefficient of data error. + +% Create and initialize network model. + +% Initialise weights reasonably close to 0 +net = mlp(nin, nhidden, nout, 'linear', alpha, beta); +net = mlpinit(net, 10); + +clc +disp('Next we take 100 samples from the posterior distribution. The first') +disp('300 samples at the start of the chain are omitted. As persistence') +disp('is used, the momentum has a small random component added at each step.') +disp('10 iterations are used at each step (compared with 100 in demhmc2).') +disp('The step size is 0.005 (compared with 0.002).') +disp('The new state is accepted if the threshold') +disp('value is greater than a random number between 0 and 1.') +disp(' ') +disp('Negative step numbers indicate samples discarded from the start of the') +disp('chain.') +disp(' ') +disp('Press any key to continue.') +pause + +% Set up vector of options for hybrid Monte Carlo. +nsamples = 100; % Number of retained samples. + +options = foptions; % Default options vector. +options(1) = 1; % Switch on diagnostics. +options(5) = 1; % Use persistence +options(7) = 10; % Number of steps in trajectory. +options(14) = nsamples; % Number of Monte Carlo samples returned. +options(15) = 300; % Number of samples omitted at start of chain. +options(17) = 0.95; % Alpha value in persistence +options(18) = 0.005; % Step size. + +w = mlppak(net); +% Initialise HMC +hmc('state', 42); +[samples, energies] = hmc('neterr', w, options, 'netgrad', net, x, t); + +clc +disp('The plot shows the underlying noise free function, the 100 samples') +disp('produced from the MLP, and their average as a Monte Carlo estimate') +disp('of the true posterior average.') +disp(' ') +disp('Press any key to continue.') +pause + +nplot = 300; +plotvals = [0 : 1/(nplot - 1) : 1]'; +pred = zeros(size(plotvals)); +fh1 = figure; +hold on +for k = 1:nsamples + w2 = samples(k,:); + net2 = mlpunpak(net, w2); + y = mlpfwd(net2, plotvals); + % Sum predictions + pred = pred + y; + h4 = plot(plotvals, y, '-r', 'LineWidth', 1); +end +pred = pred./nsamples; +% Plot data +h1 = plot(x, t, 'ob', 'LineWidth', 2, 'MarkerFaceColor', 'blue'); +axis([0 1 -3 3]) + +% Plot function +[fx, fy] = fplot('sin(2*pi*x)', [0 1], '--g'); +h2 = plot(fx, fy, '--g', 'LineWidth', 2); +set(gca, 'box', 'on'); + +% Plot averaged prediction +h3 = plot(plotvals, pred, '-c', 'LineWidth', 2); + +lstrings = char('Data', 'Function', 'Prediction', 'Samples'); +legend([h1 h2 h3 h4], lstrings, 3); +hold off + +disp('Note how the predictions become much further from the true function') +disp('away from the region of high data density.') +disp(' ') +disp('Press any key to exit.') +pause +close(fh1); +clear all; \ No newline at end of file