Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/demgmm4.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/demgmm4.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,210 @@ +%DEMGMM4 Demonstrate density modelling with a Gaussian mixture model. +% +% Description +% The problem consists of modelling data generated by a mixture of +% three Gaussians in 2 dimensions with a mixture model using full +% covariance matrices. The priors are 0.3, 0.5 and 0.2; the centres +% are (2, 3.5), (0, 0) and (0,2); the variances are (0.16, 0.64) axis +% aligned, (0.25, 1) rotated by 30 degrees and the identity matrix. The +% first figure contains a scatter plot of the data. +% +% A Gaussian mixture model with three components is trained using EM. +% The parameter vector is printed before training and after training. +% The user should press any key to continue at these points. The +% parameter vector consists of priors (the column), and centres (given +% as (x, y) pairs as the next two columns). The covariance matrices +% are printed separately. +% +% The second figure is a 3 dimensional view of the density function, +% while the third shows the axes of the 1-standard deviation ellipses +% for the three components of the mixture model. +% +% See also +% GMM, GMMINIT, GMMEM, GMMPROB, GMMUNPAK +% + +% Copyright (c) Ian T Nabney (1996-2001) + + +% Generate the data + +ndata = 500; + +% Fix the seeds for reproducible results +randn('state', 42); +rand('state', 42); +data = randn(ndata, 2); +prior = [0.3 0.5 0.2]; +% Mixture model swaps clusters 1 and 3 +datap = [0.2 0.5 0.3]; +datac = [0 2; 0 0; 2 3.5]; +datacov = repmat(eye(2), [1 1 3]); +data1 = data(1:prior(1)*ndata,:); +data2 = data(prior(1)*ndata+1:(prior(2)+prior(1))*ndata, :); +data3 = data((prior(1)+prior(2))*ndata +1:ndata, :); + +% First cluster has axis aligned variance and centre (2, 3.5) +data1(:, 1) = data1(:, 1)*0.4 + 2.0; +data1(:, 2) = data1(:, 2)*0.8 + 3.5; +datacov(:, :, 3) = [0.4*0.4 0; 0 0.8*0.8]; + +% Second cluster has variance axes rotated by 30 degrees and centre (0, 0) +rotn = [cos(pi/6) -sin(pi/6); sin(pi/6) cos(pi/6)]; +data2(:,1) = data2(:, 1)*0.5; +data2 = data2*rotn; +datacov(:, :, 2) = rotn' * [0.25 0; 0 1] * rotn; + +% Third cluster is at (0,2) +data3 = data3 + repmat([0 2], prior(3)*ndata, 1); + +% Put the dataset together again +data = [data1; data2; data3]; + +clc +disp('This demonstration illustrates the use of a Gaussian mixture model') +disp('with full covariance matrices to approximate the unconditional ') +disp('probability density of data in a two-dimensional space.') +disp('We begin by generating the data from a mixture of three Gaussians and') +disp('plotting it.') +disp(' ') +disp('The first cluster has axis aligned variance and centre (0, 2).') +disp('The second cluster has variance axes rotated by 30 degrees') +disp('and centre (0, 0). The third cluster has unit variance and centre') +disp('(2, 3.5).') +disp(' ') +disp('Press any key to continue.') +pause + +fh1 = figure; +plot(data(:, 1), data(:, 2), 'o') +set(gca, 'Box', 'on') + +% Set up mixture model +ncentres = 3; +input_dim = 2; +mix = gmm(input_dim, ncentres, 'full'); + +% Initialise the model parameters from the data +options = foptions; +options(14) = 5; % Just use 5 iterations of k-means in initialisation +mix = gmminit(mix, data, options); + +% Print out model +clc +disp('The mixture model has three components and full covariance') +disp('matrices. The model parameters after initialisation using the') +disp('k-means algorithm are as follows') +disp(' Priors Centres') +disp([mix.priors' mix.centres]) +disp('Covariance matrices are') +disp(mix.covars) +disp('Press any key to continue.') +pause + +% Set up vector of options for EM trainer +options = zeros(1, 18); +options(1) = 1; % Prints out error values. +options(14) = 50; % Number of iterations. + +disp('We now train the model using the EM algorithm for 50 iterations.') +disp(' ') +disp('Press any key to continue.') +pause +[mix, options, errlog] = gmmem(mix, data, options); + +% Print out model +disp(' ') +disp('The trained model has priors and centres:') +disp(' Priors Centres') +disp([mix.priors' mix.centres]) +disp('The data generator has priors and centres') +disp(' Priors Centres') +disp([datap' datac]) +disp('Model covariance matrices are') +disp(mix.covars(:, :, 1)) +disp(mix.covars(:, :, 2)) +disp(mix.covars(:, :, 3)) +disp('Data generator covariance matrices are') +disp(datacov(:, :, 1)) +disp(datacov(:, :, 2)) +disp(datacov(:, :, 3)) +disp('Note the close correspondence between these parameters and those') +disp('of the distribution used to generate the data. The match for') +disp('covariance matrices is not that close, but would be improved with') +disp('more iterations of the training algorithm.') +disp(' ') +disp('Press any key to continue.') +pause + +clc +disp('We now plot the density given by the mixture model as a surface plot.') +disp(' ') +disp('Press any key to continue.') +pause + +% Plot the result +x = -4.0:0.2:5.0; +y = -4.0:0.2:5.0; +[X, Y] = meshgrid(x,y); +X = X(:); +Y = Y(:); +grid = [X Y]; +Z = gmmprob(mix, grid); +Z = reshape(Z, length(x), length(y)); +c = mesh(x, y, Z); +hold on +title('Surface plot of probability density') +hold off +drawnow + +clc +disp('The final plot shows the centres and widths, given by one standard') +disp('deviation, of the three components of the mixture model. The axes') +disp('of the ellipses of constant density are shown.') +disp(' ') +disp('Press any key to continue.') +pause + +% Try to calculate a sensible position for the second figure, below the first +fig1_pos = get(fh1, 'Position'); +fig2_pos = fig1_pos; +fig2_pos(2) = fig2_pos(2) - fig1_pos(4) - 30; +fh2 = figure('Position', fig2_pos); + +h3 = plot(data(:, 1), data(:, 2), 'bo'); +axis equal; +hold on +title('Plot of data and covariances') +for i = 1:ncentres + [v,d] = eig(mix.covars(:,:,i)); + for j = 1:2 + % Ensure that eigenvector has unit length + v(:,j) = v(:,j)/norm(v(:,j)); + start=mix.centres(i,:)-sqrt(d(j,j))*(v(:,j)'); + endpt=mix.centres(i,:)+sqrt(d(j,j))*(v(:,j)'); + linex = [start(1) endpt(1)]; + liney = [start(2) endpt(2)]; + line(linex, liney, 'Color', 'k', 'LineWidth', 3) + end + % Plot ellipses of one standard deviation + theta = 0:0.02:2*pi; + x = sqrt(d(1,1))*cos(theta); + y = sqrt(d(2,2))*sin(theta); + % Rotate ellipse axes + ellipse = (v*([x; y]))'; + % Adjust centre + ellipse = ellipse + ones(length(theta), 1)*mix.centres(i,:); + plot(ellipse(:,1), ellipse(:,2), 'r-'); +end +hold off + +disp('Note how the data cluster positions and widths are captured by') +disp('the mixture model.') +disp(' ') +disp('Press any key to end.') +pause + +close(fh1); +close(fh2); +clear all; +