Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/demglm2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/demglm2.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,103 @@ +%DEMGLM2 Demonstrate simple classification using a generalized linear model. +% +% Description +% The problem consists of a two dimensional input matrix DATA and a +% vector of classifications T. The data is generated from three +% Gaussian clusters, and a generalized linear model with softmax output +% is trained using iterative reweighted least squares. A plot of the +% data together with regions shaded by the classification given by the +% network is generated. +% +% See also +% DEMGLM1, GLM, GLMTRAIN +% + +% Copyright (c) Ian T Nabney (1996-2001) + + +% Generate data from three classes in 2d +input_dim = 2; + +% Fix seeds for reproducible results +randn('state', 42); +rand('state', 42); + +ndata = 100; +% Generate mixture of three Gaussians in two dimensional space +mix = gmm(2, 3, 'spherical'); +mix.priors = [0.4 0.3 0.3]; % Cluster priors +mix.centres = [2, 2; 0.0, 0.0; 1, -1]; % Cluster centres +mix.covars = [0.5 1.0 0.6]; + +[data, label] = gmmsamp(mix, ndata); +id = eye(3); +targets = id(label,:); + +% Plot the result + +clc +disp('This demonstration illustrates the use of a generalized linear model') +disp('to classify data from three classes in a two-dimensional space. We') +disp('begin by generating and plotting the data.') +disp(' ') +disp('Press any key to continue.') +pause + +fh1 = figure; +plot(data(label==1,1), data(label==1,2), 'bo'); +hold on +axis([-4 5 -4 5]); +set(gca, 'Box', 'on') +plot(data(label==2,1), data(label==2,2), 'rx') +plot(data(label==3, 1), data(label==3, 2), 'go') +title('Data') + +clc +disp('Now we fit a model consisting of a softmax function of') +disp('a linear combination of the input variables.') +disp(' ') +disp('The model is trained using the IRLS algorithm for up to 10 iterations') +disp(' ') +disp('Press any key to continue.') +pause + +net = glm(input_dim, size(targets, 2), 'softmax'); +options = foptions; +options(1) = 1; +options(14) = 10; +net = glmtrain(net, options, data, targets); + +disp(' ') +disp('We now plot the decision regions given by this model.') +disp(' ') +disp('Press any key to continue.') +pause + +x = -4.0:0.2:5.0; +y = -4.0:0.2:5.0; +[X, Y] = meshgrid(x,y); +X = X(:); +Y = Y(:); +grid = [X Y]; +Z = glmfwd(net, grid); +[foo , class] = max(Z'); +class = class'; +colors = ['b.'; 'r.'; 'g.']; +for i = 1:3 + thisX = X(class == i); + thisY = Y(class == i); + h = plot(thisX, thisY, colors(i,:)); + set(h, 'MarkerSize', 8); +end +title('Plot of Decision regions') + +hold off + +clc +disp('Note that the boundaries of decision regions are straight lines.') +disp(' ') +disp('Press any key to end.') +pause +close(fh1); +clear all; +