Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/nethelp3.3/mlpbkp.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/nethelp3.3/mlpbkp.htm Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,50 @@ +<html> +<head> +<title> +Netlab Reference Manual mlpbkp +</title> +</head> +<body> +<H1> mlpbkp +</H1> +<h2> +Purpose +</h2> +Backpropagate gradient of error function for 2-layer network. + +<p><h2> +Synopsis +</h2> +<PRE> +g = mlpbkp(net, x, z, deltas)</PRE> + + +<p><h2> +Description +</h2> +<CODE>g = mlpbkp(net, x, z, deltas)</CODE> takes a network data structure +<CODE>net</CODE> together with a matrix <CODE>x</CODE> of input vectors, a matrix +<CODE>z</CODE> of hidden unit activations, and a matrix <CODE>deltas</CODE> of the +gradient of the error function with respect to the values of the +output units (i.e. the summed inputs to the output units, before the +activation function is applied). The return value is the gradient +<CODE>g</CODE> of the error function with respect to the network +weights. Each row of <CODE>x</CODE> corresponds to one input vector. + +<p>This function is provided so that the common backpropagation algorithm +can be used by multi-layer perceptron network models to compute +gradients for mixture density networks as well as standard error +functions. + +<p><h2> +See Also +</h2> +<CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE>, <CODE><a href="mlpderiv.htm">mlpderiv</a></CODE>, <CODE><a href="mdngrad.htm">mdngrad</a></CODE><hr> +<b>Pages:</b> +<a href="index.htm">Index</a> +<hr> +<p>Copyright (c) Ian T Nabney (1996-9) + + +</body> +</html> \ No newline at end of file