Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/nethelp3.3/index.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/nethelp3.3/index.htm Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,537 @@ +<html> +<head> +<title> +NETLAB Reference Documentation +</title> +</head> +<body> +<H1> NETLAB Online Reference Documentation </H1> +Welcome to the NETLAB online reference documentation. +The NETLAB simulation software is designed to provide all the tools necessary +for principled and theoretically well founded application development. The +NETLAB library is based on the approach and techniques described in <I>Neural +Networks for Pattern Recognition </I>(Bishop, 1995). The library includes software +implementations of a wide range of data analysis techniques, many of which are +not widely available, and are rarely, if ever, included in standard neural +network simulation packages. +<p>The online reference documentation provides direct hypertext links to specific Netlab function descriptions. +<p>If you have any comments or problems to report, please contact Ian Nabney (<a href="mailto:i.t.nabney@aston.ac.uk"><tt>i.t.nabney@aston.ac.uk</tt></a>) or Christopher Bishop (<a href="mailto:c.m.bishop@aston.ac.uk"><tt>c.m.bishop@aston.ac.uk</tt></a>).<H1> Index +</H1> +An alphabetic list of functions in Netlab.<p> +<DL> +<DT> +<CODE><a href="conffig.htm">conffig</a></CODE><DD> + Display a confusion matrix. +<DT> +<CODE><a href="confmat.htm">confmat</a></CODE><DD> + Compute a confusion matrix. +<DT> +<CODE><a href="conjgrad.htm">conjgrad</a></CODE><DD> + Conjugate gradients optimization. +<DT> +<CODE><a href="consist.htm">consist</a></CODE><DD> + Check that arguments are consistent. +<DT> +<CODE><a href="convertoldnet.htm">convertoldnet</a></CODE><DD> + Convert pre-2.3 release MLP and MDN nets to new format +<DT> +<CODE><a href="datread.htm">datread</a></CODE><DD> + Read data from an ascii file. +<DT> +<CODE><a href="datwrite.htm">datwrite</a></CODE><DD> + Write data to ascii file. +<DT> +<CODE><a href="dem2ddat.htm">dem2ddat</a></CODE><DD> + Generates two dimensional data for demos. +<DT> +<CODE><a href="demard.htm">demard</a></CODE><DD> + Automatic relevance determination using the MLP. +<DT> +<CODE><a href="demev1.htm">demev1</a></CODE><DD> + Demonstrate Bayesian regression for the MLP. +<DT> +<CODE><a href="demev2.htm">demev2</a></CODE><DD> + Demonstrate Bayesian classification for the MLP. +<DT> +<CODE><a href="demev3.htm">demev3</a></CODE><DD> + Demonstrate Bayesian regression for the RBF. +<DT> +<CODE><a href="demgauss.htm">demgauss</a></CODE><DD> + Demonstrate sampling from Gaussian distributions. +<DT> +<CODE><a href="demglm1.htm">demglm1</a></CODE><DD> + Demonstrate simple classification using a generalized linear model. +<DT> +<CODE><a href="demglm2.htm">demglm2</a></CODE><DD> + Demonstrate simple classification using a generalized linear model. +<DT> +<CODE><a href="demgmm1.htm">demgmm1</a></CODE><DD> + Demonstrate density modelling with a Gaussian mixture model. +<DT> +<CODE><a href="demgmm3.htm">demgmm3</a></CODE><DD> + Demonstrate density modelling with a Gaussian mixture model. +<DT> +<CODE><a href="demgmm4.htm">demgmm4</a></CODE><DD> + Demonstrate density modelling with a Gaussian mixture model. +<DT> +<CODE><a href="demgmm5.htm">demgmm5</a></CODE><DD> + Demonstrate density modelling with a PPCA mixture model. +<DT> +<CODE><a href="demgp.htm">demgp</a></CODE><DD> + Demonstrate simple regression using a Gaussian Process. +<DT> +<CODE><a href="demgpard.htm">demgpard</a></CODE><DD> + Demonstrate ARD using a Gaussian Process. +<DT> +<CODE><a href="demgpot.htm">demgpot</a></CODE><DD> + Computes the gradient of the negative log likelihood for a mixture model. +<DT> +<CODE><a href="demgtm1.htm">demgtm1</a></CODE><DD> + Demonstrate EM for GTM. +<DT> +<CODE><a href="demgtm2.htm">demgtm2</a></CODE><DD> + Demonstrate GTM for visualisation. +<DT> +<CODE><a href="demhint.htm">demhint</a></CODE><DD> + Demonstration of Hinton diagram for 2-layer feed-forward network. +<DT> +<CODE><a href="demhmc1.htm">demhmc1</a></CODE><DD> + Demonstrate Hybrid Monte Carlo sampling on mixture of two Gaussians. +<DT> +<CODE><a href="demhmc2.htm">demhmc2</a></CODE><DD> + Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. +<DT> +<CODE><a href="demhmc3.htm">demhmc3</a></CODE><DD> + Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. +<DT> +<CODE><a href="demkmean.htm">demkmean</a></CODE><DD> + Demonstrate simple clustering model trained with K-means. +<DT> +<CODE><a href="demknn1.htm">demknn1</a></CODE><DD> + Demonstrate nearest neighbour classifier. +<DT> +<CODE><a href="demmdn1.htm">demmdn1</a></CODE><DD> + Demonstrate fitting a multi-valued function using a Mixture Density Network. +<DT> +<CODE><a href="demmet1.htm">demmet1</a></CODE><DD> + Demonstrate Markov Chain Monte Carlo sampling on a Gaussian. +<DT> +<CODE><a href="demmlp1.htm">demmlp1</a></CODE><DD> + Demonstrate simple regression using a multi-layer perceptron +<DT> +<CODE><a href="demmlp2.htm">demmlp2</a></CODE><DD> + Demonstrate simple classification using a multi-layer perceptron +<DT> +<CODE><a href="demnlab.htm">demnlab</a></CODE><DD> + A front-end Graphical User Interface to the demos +<DT> +<CODE><a href="demns1.htm">demns1</a></CODE><DD> + Demonstrate Neuroscale for visualisation. +<DT> +<CODE><a href="demolgd1.htm">demolgd1</a></CODE><DD> + Demonstrate simple MLP optimisation with on-line gradient descent +<DT> +<CODE><a href="demopt1.htm">demopt1</a></CODE><DD> + Demonstrate different optimisers on Rosenbrock's function. +<DT> +<CODE><a href="dempot.htm">dempot</a></CODE><DD> + Computes the negative log likelihood for a mixture model. +<DT> +<CODE><a href="demprgp.htm">demprgp</a></CODE><DD> + Demonstrate sampling from a Gaussian Process prior. +<DT> +<CODE><a href="demprior.htm">demprior</a></CODE><DD> + Demonstrate sampling from a multi-parameter Gaussian prior. +<DT> +<CODE><a href="demrbf1.htm">demrbf1</a></CODE><DD> + Demonstrate simple regression using a radial basis function network. +<DT> +<CODE><a href="demsom1.htm">demsom1</a></CODE><DD> + Demonstrate SOM for visualisation. +<DT> +<CODE><a href="demtrain.htm">demtrain</a></CODE><DD> + Demonstrate training of MLP network. +<DT> +<CODE><a href="dist2.htm">dist2</a></CODE><DD> + Calculates squared distance between two sets of points. +<DT> +<CODE><a href="eigdec.htm">eigdec</a></CODE><DD> + Sorted eigendecomposition +<DT> +<CODE><a href="errbayes.htm">errbayes</a></CODE><DD> + Evaluate Bayesian error function for network. +<DT> +<CODE><a href="evidence.htm">evidence</a></CODE><DD> + Re-estimate hyperparameters using evidence approximation. +<DT> +<CODE><a href="fevbayes.htm">fevbayes</a></CODE><DD> + Evaluate Bayesian regularisation for network forward propagation. +<DT> +<CODE><a href="gauss.htm">gauss</a></CODE><DD> + Evaluate a Gaussian distribution. +<DT> +<CODE><a href="gbayes.htm">gbayes</a></CODE><DD> + Evaluate gradient of Bayesian error function for network. +<DT> +<CODE><a href="glm.htm">glm</a></CODE><DD> + Create a generalized linear model. +<DT> +<CODE><a href="glmderiv.htm">glmderiv</a></CODE><DD> + Evaluate derivatives of GLM outputs with respect to weights. +<DT> +<CODE><a href="glmerr.htm">glmerr</a></CODE><DD> + Evaluate error function for generalized linear model. +<DT> +<CODE><a href="glmevfwd.htm">glmevfwd</a></CODE><DD> + Forward propagation with evidence for GLM +<DT> +<CODE><a href="glmfwd.htm">glmfwd</a></CODE><DD> + Forward propagation through generalized linear model. +<DT> +<CODE><a href="glmgrad.htm">glmgrad</a></CODE><DD> + Evaluate gradient of error function for generalized linear model. +<DT> +<CODE><a href="glmhess.htm">glmhess</a></CODE><DD> + Evaluate the Hessian matrix for a generalised linear model. +<DT> +<CODE><a href="glminit.htm">glminit</a></CODE><DD> + Initialise the weights in a generalized linear model. +<DT> +<CODE><a href="glmpak.htm">glmpak</a></CODE><DD> + Combines weights and biases into one weights vector. +<DT> +<CODE><a href="glmtrain.htm">glmtrain</a></CODE><DD> + Specialised training of generalized linear model +<DT> +<CODE><a href="glmunpak.htm">glmunpak</a></CODE><DD> + Separates weights vector into weight and bias matrices. +<DT> +<CODE><a href="gmm.htm">gmm</a></CODE><DD> + Creates a Gaussian mixture model with specified architecture. +<DT> +<CODE><a href="gmmactiv.htm">gmmactiv</a></CODE><DD> + Computes the activations of a Gaussian mixture model. +<DT> +<CODE><a href="gmmem.htm">gmmem</a></CODE><DD> + EM algorithm for Gaussian mixture model. +<DT> +<CODE><a href="gmminit.htm">gmminit</a></CODE><DD> + Initialises Gaussian mixture model from data +<DT> +<CODE><a href="gmmpak.htm">gmmpak</a></CODE><DD> + Combines all the parameters in a Gaussian mixture model into one vector. +<DT> +<CODE><a href="gmmpost.htm">gmmpost</a></CODE><DD> + Computes the class posterior probabilities of a Gaussian mixture model. +<DT> +<CODE><a href="gmmprob.htm">gmmprob</a></CODE><DD> + Computes the data probability for a Gaussian mixture model. +<DT> +<CODE><a href="gmmsamp.htm">gmmsamp</a></CODE><DD> + Sample from a Gaussian mixture distribution. +<DT> +<CODE><a href="gmmunpak.htm">gmmunpak</a></CODE><DD> + Separates a vector of Gaussian mixture model parameters into its components. +<DT> +<CODE><a href="gp.htm">gp</a></CODE><DD> + Create a Gaussian Process. +<DT> +<CODE><a href="gpcovar.htm">gpcovar</a></CODE><DD> + Calculate the covariance for a Gaussian Process. +<DT> +<CODE><a href="gpcovarf.htm">gpcovarf</a></CODE><DD> + Calculate the covariance function for a Gaussian Process. +<DT> +<CODE><a href="gpcovarp.htm">gpcovarp</a></CODE><DD> + Calculate the prior covariance for a Gaussian Process. +<DT> +<CODE><a href="gperr.htm">gperr</a></CODE><DD> + Evaluate error function for Gaussian Process. +<DT> +<CODE><a href="gpfwd.htm">gpfwd</a></CODE><DD> + Forward propagation through Gaussian Process. +<DT> +<CODE><a href="gpgrad.htm">gpgrad</a></CODE><DD> + Evaluate error gradient for Gaussian Process. +<DT> +<CODE><a href="gpinit.htm">gpinit</a></CODE><DD> + Initialise Gaussian Process model. +<DT> +<CODE><a href="gppak.htm">gppak</a></CODE><DD> + Combines GP hyperparameters into one vector. +<DT> +<CODE><a href="gpunpak.htm">gpunpak</a></CODE><DD> + Separates hyperparameter vector into components. +<DT> +<CODE><a href="gradchek.htm">gradchek</a></CODE><DD> + Checks a user-defined gradient function using finite differences. +<DT> +<CODE><a href="graddesc.htm">graddesc</a></CODE><DD> + Gradient descent optimization. +<DT> +<CODE><a href="gsamp.htm">gsamp</a></CODE><DD> + Sample from a Gaussian distribution. +<DT> +<CODE><a href="gtm.htm">gtm</a></CODE><DD> + Create a Generative Topographic Map. +<DT> +<CODE><a href="gtmem.htm">gtmem</a></CODE><DD> + EM algorithm for Generative Topographic Mapping. +<DT> +<CODE><a href="gtmfwd.htm">gtmfwd</a></CODE><DD> + Forward propagation through GTM. +<DT> +<CODE><a href="gtminit.htm">gtminit</a></CODE><DD> + Initialise the weights and latent sample in a GTM. +<DT> +<CODE><a href="gtmlmean.htm">gtmlmean</a></CODE><DD> + Mean responsibility for data in a GTM. +<DT> +<CODE><a href="gtmlmode.htm">gtmlmode</a></CODE><DD> + Mode responsibility for data in a GTM. +<DT> +<CODE><a href="gtmmag.htm">gtmmag</a></CODE><DD> + Magnification factors for a GTM +<DT> +<CODE><a href="gtmpost.htm">gtmpost</a></CODE><DD> + Latent space responsibility for data in a GTM. +<DT> +<CODE><a href="gtmprob.htm">gtmprob</a></CODE><DD> + Probability for data under a GTM. +<DT> +<CODE><a href="hbayes.htm">hbayes</a></CODE><DD> + Evaluate Hessian of Bayesian error function for network. +<DT> +<CODE><a href="hesschek.htm">hesschek</a></CODE><DD> + Use central differences to confirm correct evaluation of Hessian matrix. +<DT> +<CODE><a href="hintmat.htm">hintmat</a></CODE><DD> + Evaluates the coordinates of the patches for a Hinton diagram. +<DT> +<CODE><a href="hinton.htm">hinton</a></CODE><DD> + Plot Hinton diagram for a weight matrix. +<DT> +<CODE><a href="histp.htm">histp</a></CODE><DD> + Histogram estimate of 1-dimensional probability distribution. +<DT> +<CODE><a href="hmc.htm">hmc</a></CODE><DD> + Hybrid Monte Carlo sampling. +<DT> +<CODE><a href="kmeans.htm">kmeans</a></CODE><DD> + Trains a k means cluster model. +<DT> +<CODE><a href="knn.htm">knn</a></CODE><DD> + Creates a K-nearest-neighbour classifier. +<DT> +<CODE><a href="knnfwd.htm">knnfwd</a></CODE><DD> + Forward propagation through a K-nearest-neighbour classifier. +<DT> +<CODE><a href="linef.htm">linef</a></CODE><DD> + Calculate function value along a line. +<DT> +<CODE><a href="linemin.htm">linemin</a></CODE><DD> + One dimensional minimization. +<DT> +<CODE><a href="maxitmess.htm">maxitmess</a></CODE><DD> + Create a standard error message when training reaches max. iterations. +<DT> +<CODE><a href="mdn.htm">mdn</a></CODE><DD> + Creates a Mixture Density Network with specified architecture. +<DT> +<CODE><a href="mdn2gmm.htm">mdn2gmm</a></CODE><DD> + Converts an MDN mixture data structure to array of GMMs. +<DT> +<CODE><a href="mdndist2.htm">mdndist2</a></CODE><DD> + Calculates squared distance between centres of Gaussian kernels and data +<DT> +<CODE><a href="mdnerr.htm">mdnerr</a></CODE><DD> + Evaluate error function for Mixture Density Network. +<DT> +<CODE><a href="mdnfwd.htm">mdnfwd</a></CODE><DD> + Forward propagation through Mixture Density Network. +<DT> +<CODE><a href="mdngrad.htm">mdngrad</a></CODE><DD> + Evaluate gradient of error function for Mixture Density Network. +<DT> +<CODE><a href="mdninit.htm">mdninit</a></CODE><DD> + Initialise the weights in a Mixture Density Network. +<DT> +<CODE><a href="mdnpak.htm">mdnpak</a></CODE><DD> + Combines weights and biases into one weights vector. +<DT> +<CODE><a href="mdnpost.htm">mdnpost</a></CODE><DD> + Computes the posterior probability for each MDN mixture component. +<DT> +<CODE><a href="mdnprob.htm">mdnprob</a></CODE><DD> + Computes the data probability likelihood for an MDN mixture structure. +<DT> +<CODE><a href="mdnunpak.htm">mdnunpak</a></CODE><DD> + Separates weights vector into weight and bias matrices. +<DT> +<CODE><a href="metrop.htm">metrop</a></CODE><DD> + Markov Chain Monte Carlo sampling with Metropolis algorithm. +<DT> +<CODE><a href="minbrack.htm">minbrack</a></CODE><DD> + Bracket a minimum of a function of one variable. +<DT> +<CODE><a href="mlp.htm">mlp</a></CODE><DD> + Create a 2-layer feedforward network. +<DT> +<CODE><a href="mlpbkp.htm">mlpbkp</a></CODE><DD> + Backpropagate gradient of error function for 2-layer network. +<DT> +<CODE><a href="mlpderiv.htm">mlpderiv</a></CODE><DD> + Evaluate derivatives of network outputs with respect to weights. +<DT> +<CODE><a href="mlperr.htm">mlperr</a></CODE><DD> + Evaluate error function for 2-layer network. +<DT> +<CODE><a href="mlpevfwd.htm">mlpevfwd</a></CODE><DD> + Forward propagation with evidence for MLP +<DT> +<CODE><a href="mlpfwd.htm">mlpfwd</a></CODE><DD> + Forward propagation through 2-layer network. +<DT> +<CODE><a href="mlpgrad.htm">mlpgrad</a></CODE><DD> + Evaluate gradient of error function for 2-layer network. +<DT> +<CODE><a href="mlphdotv.htm">mlphdotv</a></CODE><DD> + Evaluate the product of the data Hessian with a vector. +<DT> +<CODE><a href="mlphess.htm">mlphess</a></CODE><DD> + Evaluate the Hessian matrix for a multi-layer perceptron network. +<DT> +<CODE><a href="mlphint.htm">mlphint</a></CODE><DD> + Plot Hinton diagram for 2-layer feed-forward network. +<DT> +<CODE><a href="mlpinit.htm">mlpinit</a></CODE><DD> + Initialise the weights in a 2-layer feedforward network. +<DT> +<CODE><a href="mlppak.htm">mlppak</a></CODE><DD> + Combines weights and biases into one weights vector. +<DT> +<CODE><a href="mlpprior.htm">mlpprior</a></CODE><DD> + Create Gaussian prior for mlp. +<DT> +<CODE><a href="mlptrain.htm">mlptrain</a></CODE><DD> + Utility to train an MLP network for demtrain +<DT> +<CODE><a href="mlpunpak.htm">mlpunpak</a></CODE><DD> + Separates weights vector into weight and bias matrices. +<DT> +<CODE><a href="netderiv.htm">netderiv</a></CODE><DD> + Evaluate derivatives of network outputs by weights generically. +<DT> +<CODE><a href="neterr.htm">neterr</a></CODE><DD> + Evaluate network error function for generic optimizers +<DT> +<CODE><a href="netevfwd.htm">netevfwd</a></CODE><DD> + Generic forward propagation with evidence for network +<DT> +<CODE><a href="netgrad.htm">netgrad</a></CODE><DD> + Evaluate network error gradient for generic optimizers +<DT> +<CODE><a href="nethess.htm">nethess</a></CODE><DD> + Evaluate network Hessian +<DT> +<CODE><a href="netinit.htm">netinit</a></CODE><DD> + Initialise the weights in a network. +<DT> +<CODE><a href="netopt.htm">netopt</a></CODE><DD> + Optimize the weights in a network model. +<DT> +<CODE><a href="netpak.htm">netpak</a></CODE><DD> + Combines weights and biases into one weights vector. +<DT> +<CODE><a href="netunpak.htm">netunpak</a></CODE><DD> + Separates weights vector into weight and bias matrices. +<DT> +<CODE><a href="olgd.htm">olgd</a></CODE><DD> + On-line gradient descent optimization. +<DT> +<CODE><a href="pca.htm">pca</a></CODE><DD> + Principal Components Analysis +<DT> +<CODE><a href="plotmat.htm">plotmat</a></CODE><DD> + Display a matrix. +<DT> +<CODE><a href="ppca.htm">ppca</a></CODE><DD> + Probabilistic Principal Components Analysis +<DT> +<CODE><a href="quasinew.htm">quasinew</a></CODE><DD> + Quasi-Newton optimization. +<DT> +<CODE><a href="rbf.htm">rbf</a></CODE><DD> + Creates an RBF network with specified architecture +<DT> +<CODE><a href="rbfbkp.htm">rbfbkp</a></CODE><DD> + Backpropagate gradient of error function for RBF network. +<DT> +<CODE><a href="rbfderiv.htm">rbfderiv</a></CODE><DD> + Evaluate derivatives of RBF network outputs with respect to weights. +<DT> +<CODE><a href="rbferr.htm">rbferr</a></CODE><DD> + Evaluate error function for RBF network. +<DT> +<CODE><a href="rbfevfwd.htm">rbfevfwd</a></CODE><DD> + Forward propagation with evidence for RBF +<DT> +<CODE><a href="rbffwd.htm">rbffwd</a></CODE><DD> + Forward propagation through RBF network with linear outputs. +<DT> +<CODE><a href="rbfgrad.htm">rbfgrad</a></CODE><DD> + Evaluate gradient of error function for RBF network. +<DT> +<CODE><a href="rbfhess.htm">rbfhess</a></CODE><DD> + Evaluate the Hessian matrix for RBF network. +<DT> +<CODE><a href="rbfjacob.htm">rbfjacob</a></CODE><DD> + Evaluate derivatives of RBF network outputs with respect to inputs. +<DT> +<CODE><a href="rbfpak.htm">rbfpak</a></CODE><DD> + Combines all the parameters in an RBF network into one weights vector. +<DT> +<CODE><a href="rbfprior.htm">rbfprior</a></CODE><DD> + Create Gaussian prior and output layer mask for RBF. +<DT> +<CODE><a href="rbfsetbf.htm">rbfsetbf</a></CODE><DD> + Set basis functions of RBF from data. +<DT> +<CODE><a href="rbfsetfw.htm">rbfsetfw</a></CODE><DD> + Set basis function widths of RBF. +<DT> +<CODE><a href="rbftrain.htm">rbftrain</a></CODE><DD> + Two stage training of RBF network. +<DT> +<CODE><a href="rbfunpak.htm">rbfunpak</a></CODE><DD> + Separates a vector of RBF weights into its components. +<DT> +<CODE><a href="rosegrad.htm">rosegrad</a></CODE><DD> + Calculate gradient of Rosenbrock's function. +<DT> +<CODE><a href="rosen.htm">rosen</a></CODE><DD> + Calculate Rosenbrock's function. +<DT> +<CODE><a href="scg.htm">scg</a></CODE><DD> + Scaled conjugate gradient optimization. +<DT> +<CODE><a href="som.htm">som</a></CODE><DD> + Creates a Self-Organising Map. +<DT> +<CODE><a href="somfwd.htm">somfwd</a></CODE><DD> + Forward propagation through a Self-Organising Map. +<DT> +<CODE><a href="sompak.htm">sompak</a></CODE><DD> + Combines node weights into one weights matrix. +<DT> +<CODE><a href="somtrain.htm">somtrain</a></CODE><DD> + Kohonen training algorithm for SOM. +<DT> +<CODE><a href="somunpak.htm">somunpak</a></CODE><DD> + Replaces node weights in SOM. +</DL> + +<hr> +<p>Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997) +</body> +</html> \ No newline at end of file