Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/nethelp3.3/fevbayes.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/nethelp3.3/fevbayes.htm Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,53 @@ +<html> +<head> +<title> +Netlab Reference Manual fevbayes +</title> +</head> +<body> +<H1> fevbayes +</H1> +<h2> +Purpose +</h2> +Evaluate Bayesian regularisation for network forward propagation. + +<p><h2> +Synopsis +</h2> +<PRE> +extra = fevbayes(net, y, a, x, t, x_test) +[extra, invhess] = fevbayes(net, y, a, x, t, x_test, invhess) +</PRE> + + +<p><h2> +Description +</h2> +<CODE>extra = fevbayes(net, y, a, x, t, x_test)</CODE> takes a network data structure +<CODE>net</CODE> together with a set of hidden unit activations <CODE>a</CODE> from +test inputs <CODE>x_test</CODE>, training data inputs <CODE>x</CODE> and <CODE>t</CODE> and +outputs a matrix of extra information <CODE>extra</CODE> that consists of +error bars (variance) +for a regression problem or moderated outputs for a classification problem. +The optional argument (and return value) +<CODE>invhess</CODE> is the inverse of the network Hessian +computed on the training data inputs and targets. Passing it in avoids +recomputing it, which can be a significant saving for large training sets. + +<p>This is called by network-specific functions such as <CODE>mlpevfwd</CODE> which +are needed since the return values (predictions and hidden unit activations) +for different network types are in different orders (for good reasons). + +<p><h2> +See Also +</h2> +<CODE><a href="mlpevfwd.htm">mlpevfwd</a></CODE>, <CODE><a href="rbfevfwd.htm">rbfevfwd</a></CODE>, <CODE><a href="glmevfwd.htm">glmevfwd</a></CODE><hr> +<b>Pages:</b> +<a href="index.htm">Index</a> +<hr> +<p>Copyright (c) Ian T Nabney (1996-9) + + +</body> +</html> \ No newline at end of file