Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/potentials/@cgpot/marginalize_pot.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/potentials/@cgpot/marginalize_pot.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,153 @@ +function smallpot = marginalize_pot(bigpot, keep, maximize, useC) +% MARGINALIZE_POT Marginalize a cgpot onto a smaller domain. +% smallpot = marginalize_pot(bigpot, keep, maximize, useC) +% +% If maximize = 1, we raise an error. +% useC is ignored. + +if nargin < 3, maximize = 0; end +assert(~maximize); + + +sumover = mysetdiff(bigpot.domain, keep); +csumover = myintersect(sumover, bigpot.cdom); +dsumover = myintersect(sumover, bigpot.ddom); +dkeep = myintersect(keep, bigpot.ddom); +ckeep = myintersect(keep, bigpot.cdom); +%ns = sparse(1, max(bigpot.domain)); % must be full, so I is an integer +ns = zeros(1, max(bigpot.domain)); +ns(bigpot.ddom) = bigpot.dsizes; +ns(bigpot.cdom) = bigpot.csizes; + +% sum(ns(csumover))==0 is like isempty(csumover) but handles observed nodes. +% Similarly, prod(ns(dsumover))==1 is like isempty(dsumover) + +% Marginalize the cts parts. +% If we are in canonical form, we stay that way, since moment form might not exist. +% Besides, we would like to minimize the number of conversions. +if sum(ns(csumover)) > 0 + if bigpot.subtype == 'm' + for i=1:bigpot.dsize + bigpot.mom{i} = marginalize_pot(bigpot.mom{i}, ckeep); + end + else + for i=1:bigpot.dsize + bigpot.can{i} = marginalize_pot(bigpot.can{i}, ckeep); + end + end +end + +% If we are not marginalizing over any discrete nodes, we are done. +if prod(ns(dsumover))==1 + smallpot = cgpot(dkeep, ckeep, ns, bigpot.can, bigpot.mom, bigpot.subtype); + return; +end + +% To marginalize the discrete parts, we partition the cts parts into those that depend +% on dkeep (i) and those that depend on on dsumover (j). + +I = prod(ns(dkeep)); +J = prod(ns(dsumover)); +C = sum(ns(ckeep)); +sum_map = find_equiv_posns(dsumover, bigpot.ddom); +keep_map = find_equiv_posns(dkeep, bigpot.ddom); +iv = zeros(1, length(bigpot.ddom)); % index vector + +% If in canonical form, marginalize if possible, else convert to moment form. +if 0 & bigpot.subtype == 'c' + p1 = zeros(I,J); + h1 = zeros(C,J,I); + K1 = zeros(C,C,J,I); + for i=1:I + keep_iv = ind2subv(ns(dkeep), i); + iv(keep_map) = keep_iv; + for j=1:J + sum_iv = ind2subv(ns(dsumover), j); + iv(sum_map) = sum_iv; + k = subv2ind(ns(bigpot.ddom), iv); + can = struct(bigpot.can{k}); % violate object privacy + p1(i,j) = exp(can.g); + if C > 0 % so mu1 and Sigma1 are non-empty + h1(:,j,i) = can.h; + K1(:,:,j,i) = can.K; + end + end + end + + % If the cts parts do not depend on j, we can just marginalize the weighting coefficient g. + jdepends = 0; + for i=1:I + for j=2:J + if ~approxeq(h1(:,j,i), h1(:,1,i)) | ~approxeq(K1(:,:,j,i), K1(:,:,1,i)) + jdepends = 1; + break + end + end + end + + if ~jdepends + %g2 = log(sum(p1, 2)); + g2 = zeros(I,1); + for i=1:I + s = sum(p1(i,:)); + if s > 0 + g2(i) = log(s); + end + end + h2 = h1; + K2 = K1; + can = cell(1,I); + j = 1; % arbitrary + for i=1:I + can{i} = cpot(ckeep, ns(ckeep), g2(i), h2(:,j,i), K2(:,:,j,i)); + end + smallpot = cgpot(dkeep, ckeep, ns, can, [], 'c'); + return; + else + % Since the cts parts depend on j, we must convert to moment form + bigpot = cg_can_to_mom(bigpot); + end +end + + +% Marginalize in moment form +bigpot = cg_can_to_mom(bigpot); + +% Now partition the moment components. +T1 = zeros(I,J); +mu1 = zeros(C,J,I); +Sigma1 = zeros(C,C,J,I); +for i=1:I + keep_iv = ind2subv(ns(dkeep), i); + iv(keep_map) = keep_iv; + for j=1:J + sum_iv = ind2subv(ns(dsumover), j); + iv(sum_map) = sum_iv; + k = subv2ind(ns(bigpot.ddom), iv); + mom = struct(bigpot.mom{k}); % violate object privacy + T1(i,j) = exp(mom.logp); + if C > 0 % so mu1 and Sigma1 are non-empty + mu1(:,j,i) = mom.mu; + Sigma1(:,:,j,i) = mom.Sigma; + end + end +end + +% Collapse the mixture of Gaussians +coef = mk_stochastic(T1); % coef must be convex combination +T2 = sum(T1,2); +T2 = T2 + (T2==0)*eps; +%if C > 0, disp('collapsing onto '); disp(leep); end +mu = []; +Sigma = []; +mom = cell(1,I); +for i=1:I + if C > 0 + [mu, Sigma] = collapse_mog(mu1(:,:,i), Sigma1(:,:,:,i), coef(i,:)); + end + logp = log(T2(i)); + mom{i} = mpot(ckeep, ns(ckeep), logp, mu, Sigma); +end + +smallpot = cgpot(dkeep, ckeep, ns, [], mom, 'm'); +