Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/general/mk_limid.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/general/mk_limid.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,93 @@ +function bnet = mk_limid(dag, node_sizes, varargin) +% MK_LIMID Make a limited information influence diagram +% +% BNET = MK_LIMID(DAG, NODE_SIZES, ...) +% DAG is the adjacency matrix for a directed acyclic graph. +% The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary. +% For decision nodes, the parents must explicitely include all nodes +% on which it can depends, in contrast to the implicit no-forgetting assumption of influence diagrams. +% (For details, see "Representing and solving decision problems with limited information", +% Lauritzen and Nilsson, Management Science, 2001.) +% +% node_sizes(i) is the number of values node i can take on, +% or the length of node i if i is a continuous-valued vector. +% node_sizes(i) = 1 if i is a utility node. +% +% The list below gives optional arguments [default value in brackets]. +% +% chance - the list of nodes which are random variables [1:N] +% decision - the list of nodes which are decision nodes [ [] ] +% utility - the list of nodes which are utility nodes [ [] ] +% equiv_class - equiv_class(i)=j means node i gets its params from CPD{j} [1:N] +% +% e.g., limid = mk_limid(dag, ns, 'chance', [1 3], 'utility', [2]) + +n = length(dag); + +% default values for parameters +bnet.chance_nodes = 1:n; +bnet.equiv_class = 1:n; +bnet.utility_nodes = []; +bnet.decision_nodes = []; +bnet.dnodes = 1:n; % discrete + +if nargin >= 3 + args = varargin; + nargs = length(args); + if ~isstr(args{1}) + if nargs >= 1, bnet.dnodes = args{1}; end + if nargs >= 2, bnet.equiv_class = args{2}; end + else + for i=1:2:nargs + switch args{i}, + case 'equiv_class', bnet.equiv_class = args{i+1}; + case 'chance', bnet.chance_nodes = args{i+1}; + case 'utility', bnet.utility_nodes = args{i+1}; + case 'decision', bnet.decision_nodes = args{i+1}; + case 'discrete', bnet.dnodes = args{i+1}; + otherwise, + error(['invalid argument name ' args{i}]); + end + end + end +end + +bnet.limid = 1; + +bnet.dag = dag; +bnet.node_sizes = node_sizes(:)'; + +bnet.cnodes = mysetdiff(1:n, bnet.dnodes); +% too many functions refer to cnodes to rename it to cts_nodes - +% We hope it won't be confused with chance nodes! + +bnet.parents = cell(1,n); +for i=1:n + bnet.parents{i} = parents(dag, i); +end + +E = max(bnet.equiv_class); +mem = cell(1,E); +for i=1:n + e = bnet.equiv_class(i); + mem{e} = [mem{e} i]; +end +bnet.members_of_equiv_class = mem; + +bnet.CPD = cell(1, E); + +% for e=1:E +% i = bnet.members_of_equiv_class{e}(1); % pick arbitrary member +% switch type{e} +% case 'tabular', bnet.CPD{e} = tabular_CPD(bnet, i); +% case 'gaussian', bnet.CPD{e} = gaussian_CPD(bnet, i); +% otherwise, error(['unrecognized CPD type ' type{e}]); +% end +% end + +directed = 1; +if ~acyclic(dag,directed) + error('graph must be acyclic') +end + +bnet.order = topological_sort(bnet.dag);