Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/general/dbn_to_hmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/general/dbn_to_hmm.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,81 @@ +function [startprob, transprob, obsprob] = dbn_to_hmm(bnet) +% DBN_TO_HMM % Convert DBN params to HMM params +% [startprob, transprob, obsprob] = dbn_to_hmm(bnet, onodes) +% startprob(i) +% transprob(i,j) +% obsprob{k}.big_CPT(i,o) if k'th observed node is discrete +% obsprob{k}.big_mu(:,i), .big_Sigma(:,:,i) if k'th observed node is Gaussian +% Big means the domain contains all the hidden discrete nodes, not just the parents. + +% Called by constructor and by update_engine + +ss = length(bnet.intra); +onodes = bnet.observed; +hnodes = mysetdiff(1:ss, onodes); +evidence = cell(ss, 2); +ns = bnet.node_sizes(:); +Qh = prod(ns(hnodes)); +tmp = dpot_to_table(compute_joint_pot(bnet, hnodes, evidence)); +startprob = reshape(tmp, Qh, 1); + +tmp = dpot_to_table(compute_joint_pot(bnet, hnodes+ss, evidence, [hnodes hnodes+ss])); +transprob = mk_stochastic(reshape(tmp, Qh, Qh)); + +% P(o|ps) is used by mk_hmm_obs_lik_vec for a single time slice +% P(o|h) (the big version), where h = all hidden nodes, is used by enter_evidence + +obsprob = cell(1, length(onodes)); +for i=1:length(onodes) + o = onodes(i); + if bnet.auto_regressive(o) + % We assume the parents of this node are all the hidden nodes in the slice, + % so the params already are "big". Also, we assume we regress only on our old selves. + % slice 1 + e = bnet.equiv_class(o); + CPD = struct(bnet.CPD{e}); + O = ns(o); + ps = bnet.parents{o}; + Qps = prod(ns(ps)); + obsprob{i}.big_mu0 = reshape(CPD.mean, [O Qps]); + obsprob{i}.big_Sigma0 = reshape(CPD.cov, [O O Qps]); + + % slice t>1 + e = bnet.equiv_class(o+ss); + CPD = struct(bnet.CPD{e}); + O = ns(o); + dps = mysetdiff(bnet.parents{o+ss}, o); + Qdps = prod(ns(dps)); + obsprob{i}.big_mu = reshape(CPD.mean, [O Qdps]); + obsprob{i}.big_Sigma = reshape(CPD.cov, [O O Qdps]); + obsprob{i}.big_W = reshape(CPD.weights, [O O Qdps]); + else + e = bnet.equiv_class(o+ss); + CPD = struct(bnet.CPD{e}); + O = ns(o); + ps = bnet.parents{o}; + Qps = prod(ns(ps)); + % We make a big potential, replicating the params if necessary + % e.g., for a 2 chain coupled HMM, mu(:,Q1) becomes mu(:,Q1,Q2) + bigpot = pot_to_marginal(compute_joint_pot(bnet, onodes(i), evidence, [hnodes onodes(i)])); + + if myismember(o, bnet.dnodes) + obsprob{i}.CPT = reshape(CPD.CPT, [Qps O]); + obsprob{i}.big_CPT = reshape(bigpot.T, Qh, O); + else + obsprob{i}.big_mu = bigpot.mu; + obsprob{i}.big_Sigma = bigpot.Sigma; + + if 1 + obsprob{i}.mu = reshape(CPD.mean, [O Qps]); + C = reshape(CPD.cov, [O O Qps]); + obsprob{i}.Sigma = C; + d = size(obsprob{i}.mu, 1); + for j=1:Qps + obsprob{i}.inv_Sigma(:,:,j) = inv(C(:,:,j)); + obsprob{i}.denom(j) = (2*pi)^(d/2)*sqrt(abs(det(C(:,:,j)))); + end + end + + end % if discrete + end % if ar +end % for