Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/static/dtree/test_restaurants.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/static/dtree/test_restaurants.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,98 @@ +% Here the training data is adapted from Russell95 book. See restaurant.names for description. +% (1) Use infomation-gain as the split testing score, we get the the same decision tree as the book Russell 95 (page 537), +% and the Gain(Patrons) is 0.5409, equal to the result in Page 541 of Russell 95. (see below output trace) +% (Note: the dtree in that book has small compilation error, the Type node is from YES of Hungry node, not NO.) +% (2) Use gain-ratio (Quilan 93), the splitting defavorite attribute with more values. (e.g. the Type attribute here) + +dtreeCPD=tree_CPD; + +% load data +fname = fullfile(BNT_HOME, 'examples', 'static', 'uci_data', 'restaurant', 'restaurant.data'); +data=load(fname); +data=data'; + +%make the data be BNT compliant (values for discrete nodes are from 1-n, here n is the node size) + % e.g. if the values are [0 1 6], they must be mapping to [1 2 3] +%data=transform_data(data,'tmp.dat',[]); %here no cts nodes + +% learn decision tree from data +ns=2*ones(1,11); +ns(5:6)=3; +ns(9:10)=4; +dtreeCPD1=learn_params(dtreeCPD,1:11,data,ns,[]); + +% evaluate on data +[score,outputs]=evaluate_tree_performance(dtreeCPD1,1:11,data,ns,[]); +fprintf('Accuracy in training data %6.3f\n',score); + +% show decision tree using graphpad + + + +% --------------------------Output trace: using Information-Gain------------------------------ +% The splits are Patron, Hungry, Type, Fri/Sat +% ********************************* +% Create node 1 split at 5 gain 0.5409 Th 0. Class 1 Cases 12 Error 6 +% Create leaf node(onecla) 2. Class 1 Cases 2 Error 0 +% Add subtree node 2 to 1. #nodes 2 +% Create leaf node(onecla) 3. Class 2 Cases 4 Error 0 +% Add subtree node 3 to 1. #nodes 3 +% Create node 4 split at 4 gain 0.2516 Th 0. Class 1 Cases 6 Error 2 +% Create leaf node(onecla) 5. Class 1 Cases 2 Error 0 +% Add subtree node 5 to 4. #nodes 5 +% Create node 6 split at 9 gain 0.5000 Th 0. Class 1 Cases 4 Error 2 +% Create leaf node(nullset) 7. Father 6 Class 1 +% Create node 8 split at 3 gain 1.0000 Th 0. Class 1 Cases 2 Error 1 +% Create leaf node(onecla) 9. Class 1 Cases 1 Error 0 +% Add subtree node 9 to 8. #nodes 9 +% Create leaf node(onecla) 10. Class 2 Cases 1 Error 0 +% Add subtree node 10 to 8. #nodes 10 +% Add subtree node 8 to 6. #nodes 10 +% Create leaf node(onecla) 11. Class 2 Cases 1 Error 0 +% Add subtree node 11 to 6. #nodes 11 +% Create leaf node(onecla) 12. Class 1 Cases 1 Error 0 +% Add subtree node 12 to 6. #nodes 12 +% Add subtree node 6 to 4. #nodes 12 +% Add subtree node 4 to 1. #nodes 12 +% ******************************** +% +% Note: +% ***Create node 4 split at 4 gain 0.2516 Th 0. Class 1 Cases 6 Error 2 +% This mean we create a new node number 4, it is splitting at the attribute 4, and info-gain is 0.2516, +% "Th 0" means threshhold for splitting continous attribute, "Class 1" means the majority class at node 4 is 1, +% and "Cases 6" means it has 6 cases attached to it, "Error 2" means it has two errors if changing the class lable of +% all the cases in it to the majority class. +% *** Add subtree node 12 to 6. #nodes 12 +% It means we add the child node 12 to node 6. +% *** Create leaf node(onecla) 10. Class 2 Cases 1 Error 0 +% here 'onecla' means all cases in this node belong to one class, so no need to split further. +% 'nullset' means no training cases belong to this node, we use its parent node majority class as its class +% +% +% +% ---------------Output trace: using GainRatio----------------------- +% The splits are Patron, Hungry, Fri/Sat, Price +% +% +% Create node 1 split at 5 gain 0.3707 Th 0. Class 1 Cases 12 Error 6 +% Create leaf node(onecla) 2. Class 1 Cases 2 Error 0 +% Add subtree node 2 to 1. #nodes 2 +% Create leaf node(onecla) 3. Class 2 Cases 4 Error 0 +% Add subtree node 3 to 1. #nodes 3 +% Create node 4 split at 4 gain 0.2740 Th 0. Class 1 Cases 6 Error 2 +% Create leaf node(onecla) 5. Class 1 Cases 2 Error 0 +% Add subtree node 5 to 4. #nodes 5 +% Create node 6 split at 3 gain 0.3837 Th 0. Class 1 Cases 4 Error 2 +% Create leaf node(onecla) 7. Class 1 Cases 1 Error 0 +% Add subtree node 7 to 6. #nodes 7 +% Create node 8 split at 6 gain 1.0000 Th 0. Class 2 Cases 3 Error 1 +% Create leaf node(onecla) 9. Class 2 Cases 2 Error 0 +% Add subtree node 9 to 8. #nodes 9 +% Create leaf node(nullset) 10. Father 8 Class 2 +% Create leaf node(onecla) 11. Class 1 Cases 1 Error 0 +% Add subtree node 11 to 8. #nodes 11 +% Add subtree node 8 to 6. #nodes 11 +% Add subtree node 6 to 4. #nodes 11 +% Add subtree node 4 to 1. #nodes 11 +% +%