Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/static/StructLearn/model_select1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/static/StructLearn/model_select1.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,121 @@ +% Bayesian model selection demo. + +% We generate data from the model A->B +% and compute the posterior prob of all 3 dags on 2 nodes: +% (1) A B, (2) A <- B , (3) A -> B +% Models 2 and 3 are Markov equivalent, and therefore indistinguishable from +% observational data alone. +% Using the "difficult" params, the true model only gets a higher posterior after 2000 trials! +% However, using the noisy NOT gate, the true model wins after 12 trials. + +% ground truth +N = 2; +dag = zeros(N); +A = 1; B = 2; +dag(A,B) = 1; + +difficult = 0; +if difficult + ntrials = 2000; + ns = 3*ones(1,N); + true_bnet = mk_bnet(dag, ns); + rand('state', 0); + temp = 5; + for i=1:N + %true_bnet.CPD{i} = tabular_CPD(true_bnet, i, temp); + true_bnet.CPD{i} = tabular_CPD(true_bnet, i); + end +else + ntrials = 25; + ns = 2*ones(1,N); + true_bnet = mk_bnet(dag, ns); + true_bnet.CPD{1} = tabular_CPD(true_bnet, 1, [0.5 0.5]); + pfail = 0.1; + psucc = 1-pfail; + true_bnet.CPD{2} = tabular_CPD(true_bnet, 2, [pfail psucc; psucc pfail]); % NOT gate +end + +G = mk_all_dags(N); +nhyp = length(G); +hyp_bnet = cell(1, nhyp); +for h=1:nhyp + hyp_bnet{h} = mk_bnet(G{h}, ns); + for i=1:N + % We must set the CPTs to the mean of the prior for sequential log_marg_lik to be correct + % The BDeu prior is score equivalent, so models 2,3 will be indistinguishable. + % The uniform Dirichlet prior is not score equivalent... + fam = family(G{h}, i); + hyp_bnet{h}.CPD{i}= tabular_CPD(hyp_bnet{h}, i, 'prior_type', 'dirichlet', ... + 'CPT', 'unif'); + end +end +prior = normalise(ones(1, nhyp)); + +% save results before doing sequential updating +init_hyp_bnet = hyp_bnet; +init_prior = prior; + + +rand('state', 0); +hyp_w = zeros(ntrials+1, nhyp); +hyp_w(1,:) = prior(:)'; + +data = zeros(N, ntrials); + +% First we compute the posteriors sequentially + +LL = zeros(1, nhyp); +ll = zeros(1, nhyp); +for t=1:ntrials + ev = cell2num(sample_bnet(true_bnet)); + data(:,t) = ev; + for i=1:nhyp + ll(i) = log_marg_lik_complete(hyp_bnet{i}, ev); + hyp_bnet{i} = bayes_update_params(hyp_bnet{i}, ev); + end + prior = normalise(prior .* exp(ll)); + LL = LL + ll; + hyp_w(t+1,:) = prior; +end + +% Plot posterior model probabilities +% Red = model 1 (no arcs), blue/green = models 2/3 (1 arc) +% Blue = model 2 (2->1) +% Green = model 3 (1->2, "ground truth") + +if 1 + figure; +m = size(hyp_w, 1); +h=plot(1:m, hyp_w(:,1), 'r-', 1:m, hyp_w(:,2), 'b-.', 1:m, hyp_w(:,3), 'g:'); +axis([0 m 0 1]) +title('model posterior vs. time') +%previewfig(gcf, 'format', 'png', 'height', 2, 'color', 'rgb') +%exportfig(gcf, '/home/cs/murphyk/public_html/Bayes/Figures/model_select.png',... +%'format', 'png', 'height', 2, 'color', 'rgb') +drawnow +end + + +% Now check that batch updating gives same result +hyp_bnet2 = init_hyp_bnet; +prior2 = init_prior; + +cases = num2cell(data); +LL2 = zeros(1, nhyp); +for i=1:nhyp + LL2(i) = log_marg_lik_complete(hyp_bnet2{i}, cases); + hyp_bnet2{i} = bayes_update_params(hyp_bnet2{i}, cases); +end + + +assert(approxeq(LL, LL2)) +LL + +for i=1:nhyp + for j=1:N + s1 = struct(hyp_bnet{i}.CPD{j}); + s2 = struct(hyp_bnet2{i}.CPD{j}); + assert(approxeq(s1.CPT, s2.CPT)) + end +end +