Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/kalman1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/kalman1.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,66 @@ +% Make a linear dynamical system +% X1 -> X2 +% | | +% v v +% Y1 Y2 + +intra = zeros(2); +intra(1,2) = 1; +inter = zeros(2); +inter(1,1) = 1; +n = 2; + +X = 2; % size of hidden state +Y = 2; % size of observable state +ns = [X Y]; +bnet = mk_dbn(intra, inter, ns, 'discrete', [], 'observed', 2); + +x0 = rand(X,1); +V0 = eye(X); +C0 = rand(Y,X); +R0 = eye(Y); +A0 = rand(X,X); +Q0 = eye(X); + +bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0, 'cov_prior_weight', 0); +bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0, ... + 'clamp_mean', 1, 'cov_prior_weight', 0); +bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0, ... + 'clamp_mean', 1, 'cov_prior_weight', 0); + + +T = 5; % fixed length sequences + +clear engine; +engine{1} = kalman_inf_engine(bnet); +engine{2} = jtree_unrolled_dbn_inf_engine(bnet, T); +engine{3} = jtree_dbn_inf_engine(bnet); +engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); +N = length(engine); + + +inf_time = cmp_inference_dbn(bnet, engine, T); + +ncases = 2; +max_iter = 2; +[learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter); + + +% Compare to KF toolbox + +data = zeros(Y, T, ncases); +for i=1:ncases + data(:,:,i) = cell2num(cases{i}(onodes, :)); +end +[A2, C2, Q2, R2, x2, V2, LL2trace] = learn_kalman(data, A0, C0, Q0, R0, x0, V0, max_iter); + + +e = 1; +assert(approxeq(x2, CPD{e,1}.mean)) +assert(approxeq(V2, CPD{e,1}.cov)) +assert(approxeq(C2, CPD{e,2}.weights)) +assert(approxeq(R2, CPD{e,2}.cov)); +assert(approxeq(A2, CPD{e,3}.weights)) +assert(approxeq(Q2, CPD{e,3}.cov)); +assert(approxeq(LL2trace, LL{1})) +