Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/SLAM/Old/paskin1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/SLAM/Old/paskin1.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,238 @@ +% This is like robot1, except we only use a Kalman filter. +% The goal is to study how the precision matrix changes. + +seed = 1; +rand('state', seed); +randn('state', seed); + +if 0 + T = 20; + ctrl_signal = [repmat([1 0]', 1, T/4) repmat([0 1]', 1, T/4) ... + repmat([-1 0]', 1, T/4) repmat([0 -1]', 1, T/4)]; +else + T = 60; + ctrl_signal = repmat([1 0]', 1, T); +end + +nlandmarks = 6; +if 0 + true_landmark_pos = [1 1; + 4 1; + 4 4; + 1 4]'; +else + true_landmark_pos = 10*rand(2,nlandmarks); +end +if 0 +figure(1); clf +hold on +for i=1:nlandmarks + %text(true_landmark_pos(1,i), true_landmark_pos(2,i), sprintf('L%d',i)); + plot(true_landmark_pos(1,i), true_landmark_pos(2,i), '*') +end +hold off +end + +init_robot_pos = [0 0]'; + +true_robot_pos = zeros(2, T); +true_data_assoc = zeros(1, T); +true_rel_dist = zeros(2, T); +for t=1:T + if t>1 + true_robot_pos(:,t) = true_robot_pos(:,t-1) + ctrl_signal(:,t); + else + true_robot_pos(:,t) = init_robot_pos + ctrl_signal(:,t); + end + nn = argmin(dist2(true_robot_pos(:,t)', true_landmark_pos')); + %true_data_assoc(t) = nn; + %true_data_assoc = wrap(t, nlandmarks); % observe 1, 2, 3, 4, 1, 2, ... + true_data_assoc = sample_discrete(normalise(ones(1,nlandmarks)),1,T); + true_rel_dist(:,t) = true_landmark_pos(:, nn) - true_robot_pos(:,t); +end + +R = 1e-3*eye(2); % noise added to observation +Q = 1e-3*eye(2); % noise added to robot motion + +% Create data set +obs_noise_seq = sample_gaussian([0 0]', R, T)'; +obs_rel_pos = true_rel_dist + obs_noise_seq; +%obs_rel_pos = true_rel_dist; + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% Create params for inference + +% X(t) = A X(t-1) + B U(t) + noise(Q) + +% [L1] = [1 ] * [L1] + [0] * Ut + [0 ] +% [L2] [ 1 ] [L2] [0] [ 0 ] +% [R ]t [ 1] [R ]t-1 [1] [ Q] + +% Y(t)|S(t)=s = C(s) X(t) + noise(R) +% Yt|St=1 = [1 0 -1] * [L1] + R +% [L2] +% [R ] + +% Create indices into block structure +bs = 2*ones(1, nlandmarks+1); % sizes of blocks in state space +robot_block = block(nlandmarks+1, bs); +for i=1:nlandmarks + landmark_block(:,i) = block(i, bs)'; +end +Xsz = 2*(nlandmarks+1); % 2 values for each landmark plus robot +Ysz = 2; % observe relative location +Usz = 2; % input is (dx, dy) + + +% create block-diagonal trans matrix for each switch +A = zeros(Xsz, Xsz); +for i=1:nlandmarks + bi = landmark_block(:,i); + A(bi, bi) = eye(2); +end +bi = robot_block; +A(bi, bi) = eye(2); +A = repmat(A, [1 1 nlandmarks]); % same for all switch values + +% create block-diagonal system cov + + +Qbig = zeros(Xsz, Xsz); +bi = robot_block; +Qbig(bi,bi) = Q; % only add noise to robot motion +Qbig = repmat(Qbig, [1 1 nlandmarks]); + +% create input matrix +B = zeros(Xsz, Usz); +B(robot_block,:) = eye(2); % only add input to robot position +B = repmat(B, [1 1 nlandmarks]); + +% create observation matrix for each value of the switch node +% C(:,:,i) = (0 ... I ... -I) where the I is in the i'th posn. +% This computes L(i) - R +C = zeros(Ysz, Xsz, nlandmarks); +for i=1:nlandmarks + C(:, landmark_block(:,i), i) = eye(2); + C(:, robot_block, i) = -eye(2); +end + +% create observation cov for each value of the switch node +Rbig = repmat(R, [1 1 nlandmarks]); + +% initial conditions +init_x = zeros(Xsz, 1); +init_v = zeros(Xsz, Xsz); +bi = robot_block; +init_x(bi) = init_robot_pos; +%init_V(bi, bi) = 1e-5*eye(2); % very sure of robot posn +init_V(bi, bi) = Q; % simualate uncertainty due to 1 motion step +for i=1:nlandmarks + bi = landmark_block(:,i); + init_V(bi,bi)= 1e5*eye(2); % very uncertain of landmark psosns + %init_x(bi) = true_landmark_pos(:,i); + %init_V(bi,bi)= 1e-5*eye(2); % very sure of landmark psosns +end + +%k = nlandmarks-1; % exact +k = 3; +ndx = {}; +for t=1:T + landmarks = unique(true_data_assoc(t:-1:max(t-k,1))); + tmp = [landmark_block(:, landmarks) robot_block']; + ndx{t} = tmp(:); +end + +[xa, Va] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ... + 'model', true_data_assoc, 'u', ctrl_signal, 'B', B, ... + 'ndx', ndx); + +[xe, Ve] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ... + 'model', true_data_assoc, 'u', ctrl_signal, 'B', B); + + +if 0 +est_robot_pos = x(robot_block, :); +est_robot_pos_cov = V(robot_block, robot_block, :); + +for i=1:nlandmarks + bi = landmark_block(:,i); + est_landmark_pos(:,i) = x(bi, T); + est_landmark_pos_cov(:,:,i) = V(bi, bi, T); +end +end + + + +nrows = 10; +stepsize = T/(2*nrows); +ts = 1:stepsize:T; + +if 1 % plot + +clim = [0 max(max(Va(:,:,end)))]; + +figure(2) +if 0 + imagesc(Ve(1:2:end,1:2:end, T)) + clim = get(gca,'clim'); +else + i = 1; + for t=ts(:)' + subplot(nrows,2,i) + i = i + 1; + imagesc(Ve(1:2:end,1:2:end, t)) + set(gca, 'clim', clim) + colorbar + end +end +suptitle('exact') + + +figure(3) +if 0 + imagesc(Va(1:2:end,1:2:end, T)) + set(gca,'clim', clim) +else + i = 1; + for t=ts(:)' + subplot(nrows,2,i) + i = i+1; + imagesc(Va(1:2:end,1:2:end, t)) + set(gca, 'clim', clim) + colorbar + end +end +suptitle('approx') + + +figure(4) +i = 1; +for t=ts(:)' + subplot(nrows,2,i) + i = i+1; + Vd = Va(1:2:end,1:2:end, t) - Ve(1:2:end,1:2:end,t); + imagesc(Vd) + set(gca, 'clim', clim) + colorbar +end +suptitle('diff') + +end % all plot + + +for t=1:T + i = 1:2*nlandmarks; + denom = Ve(i,i,t) + (Ve(i,i,t)==0); + Vd =(Va(i,i,t)-Ve(i,i,t)) ./ denom; + Verr(t) = max(Vd(:)); +end +figure(6); plot(Verr) +title('max relative Verr') + +for t=1:T + %err(t)=rms(xa(:,t), xe(:,t)); + err(t)=rms(xa(1:end-2,t), xe(1:end-2,t)); % exclude robot +end +figure(5);plot(err) +title('rms mean pos')