Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/CPDs/@gaussian_CPD/gaussian_CPD.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/CPDs/@gaussian_CPD/gaussian_CPD.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,161 @@ +function CPD = gaussian_CPD(bnet, self, varargin) +% GAUSSIAN_CPD Make a conditional linear Gaussian distrib. +% +% CPD = gaussian_CPD(bnet, node, ...) will create a CPD with random parameters, +% where node is the number of a node in this equivalence class. + +% To define this CPD precisely, call the continuous (cts) parents (if any) X, +% the discrete parents (if any) Q, and this node Y. Then the distribution on Y is: +% - no parents: Y ~ N(mu, Sigma) +% - cts parents : Y|X=x ~ N(mu + W x, Sigma) +% - discrete parents: Y|Q=i ~ N(mu(i), Sigma(i)) +% - cts and discrete parents: Y|X=x,Q=i ~ N(mu(i) + W(i) x, Sigma(i)) +% +% The list below gives optional arguments [default value in brackets]. +% (Let ns(i) be the size of node i, X = ns(X), Y = ns(Y) and Q = prod(ns(Q)).) +% Parameters will be reshaped to the right size if necessary. +% +% mean - mu(:,i) is the mean given Q=i [ randn(Y,Q) ] +% cov - Sigma(:,:,i) is the covariance given Q=i [ repmat(100*eye(Y,Y), [1 1 Q]) ] +% weights - W(:,:,i) is the regression matrix given Q=i [ randn(Y,X,Q) ] +% cov_type - if 'diag', Sigma(:,:,i) is diagonal [ 'full' ] +% tied_cov - if 1, we constrain Sigma(:,:,i) to be the same for all i [0] +% clamp_mean - if 1, we do not adjust mu(:,i) during learning [0] +% clamp_cov - if 1, we do not adjust Sigma(:,:,i) during learning [0] +% clamp_weights - if 1, we do not adjust W(:,:,i) during learning [0] +% cov_prior_weight - weight given to I prior for estimating Sigma [0.01] +% cov_prior_entropic - if 1, we also use an entropic prior for Sigma [0] +% +% e.g., CPD = gaussian_CPD(bnet, i, 'mean', [0; 0], 'clamp_mean', 1) + +if nargin==0 + % This occurs if we are trying to load an object from a file. + CPD = init_fields; + clamp = 0; + CPD = class(CPD, 'gaussian_CPD', generic_CPD(clamp)); + return; +elseif isa(bnet, 'gaussian_CPD') + % This might occur if we are copying an object. + CPD = bnet; + return; +end +CPD = init_fields; + +CPD = class(CPD, 'gaussian_CPD', generic_CPD(0)); + +args = varargin; +ns = bnet.node_sizes; +ps = parents(bnet.dag, self); +dps = myintersect(ps, bnet.dnodes); +cps = myintersect(ps, bnet.cnodes); +fam_sz = ns([ps self]); + +CPD.self = self; +CPD.sizes = fam_sz; + +% Figure out which (if any) of the parents are discrete, and which cts, and how big they are +% dps = discrete parents, cps = cts parents +CPD.cps = find_equiv_posns(cps, ps); % cts parent index +CPD.dps = find_equiv_posns(dps, ps); +ss = fam_sz(end); +psz = fam_sz(1:end-1); +dpsz = prod(psz(CPD.dps)); +cpsz = sum(psz(CPD.cps)); + +% set default params +CPD.mean = randn(ss, dpsz); +CPD.cov = 100*repmat(eye(ss), [1 1 dpsz]); +CPD.weights = randn(ss, cpsz, dpsz); +CPD.cov_type = 'full'; +CPD.tied_cov = 0; +CPD.clamped_mean = 0; +CPD.clamped_cov = 0; +CPD.clamped_weights = 0; +CPD.cov_prior_weight = 0.01; +CPD.cov_prior_entropic = 0; +nargs = length(args); +if nargs > 0 + CPD = set_fields(CPD, args{:}); +end + +% Make sure the matrices have 1 dimension per discrete parent. +% Bug fix due to Xuejing Sun 3/6/01 +CPD.mean = myreshape(CPD.mean, [ss ns(dps)]); +CPD.cov = myreshape(CPD.cov, [ss ss ns(dps)]); +CPD.weights = myreshape(CPD.weights, [ss cpsz ns(dps)]); + +% Precompute indices into block structured matrices +% to speed up CPD_to_lambda_msg and CPD_to_pi +cpsizes = CPD.sizes(CPD.cps); +CPD.cps_block_ndx = cell(1, length(cps)); +for i=1:length(cps) + CPD.cps_block_ndx{i} = block(i, cpsizes); +end + +%%%%%%%%%%% +% Learning stuff + +% expected sufficient statistics +CPD.Wsum = zeros(dpsz,1); +CPD.WYsum = zeros(ss, dpsz); +CPD.WXsum = zeros(cpsz, dpsz); +CPD.WYYsum = zeros(ss, ss, dpsz); +CPD.WXXsum = zeros(cpsz, cpsz, dpsz); +CPD.WXYsum = zeros(cpsz, ss, dpsz); + +% For BIC +CPD.nsamples = 0; +switch CPD.cov_type + case 'full', + % since symmetric + %ncov_params = ss*(ss-1)/2; + ncov_params = ss*(ss+1)/2; + case 'diag', + ncov_params = ss; + otherwise + error(['unrecognized cov_type ' cov_type]); +end +% params = weights + mean + cov +if CPD.tied_cov + CPD.nparams = ss*cpsz*dpsz + ss*dpsz + ncov_params; +else + CPD.nparams = ss*cpsz*dpsz + ss*dpsz + dpsz*ncov_params; +end + +% for speeding up maximize_params +CPD.useC = exist('rep_mult'); + +clamped = CPD.clamped_mean & CPD.clamped_cov & CPD.clamped_weights; +CPD = set_clamped(CPD, clamped); + +%%%%%%%%%%% + +function CPD = init_fields() +% This ensures we define the fields in the same order +% no matter whether we load an object from a file, +% or create it from scratch. (Matlab requires this.) + +CPD.self = []; +CPD.sizes = []; +CPD.cps = []; +CPD.dps = []; +CPD.mean = []; +CPD.cov = []; +CPD.weights = []; +CPD.clamped_mean = []; +CPD.clamped_cov = []; +CPD.clamped_weights = []; +CPD.cov_type = []; +CPD.tied_cov = []; +CPD.Wsum = []; +CPD.WYsum = []; +CPD.WXsum = []; +CPD.WYYsum = []; +CPD.WXXsum = []; +CPD.WXYsum = []; +CPD.nsamples = []; +CPD.nparams = []; +CPD.cov_prior_weight = []; +CPD.cov_prior_entropic = []; +CPD.useC = []; +CPD.cps_block_ndx = [];