Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/Kalman/learn_AR.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/Kalman/learn_AR.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,30 @@ +function [coef, C] = learn_AR(data, k) +% Find the ML parameters of a vector autoregressive process of order k. +% [coef, C] = learn_AR(k, data) +% data{l}(:,t) = the observations at time t in sequence l + +warning('learn_AR seems to be broken'); + +nex = length(data); +obs = cell(1, nex); +for l=1:nex + obs{l} = convert_to_lagged_form(data{l}, k); +end + +% The initial parameter values don't matter, since this is a perfectly observable problem. +% However, the size of F must be set correctly. +y = data{1}; +[s T] = size(y); +coef = rand(s,s,k); +C = rand_psd(s); +[F,H,Q,R,initx,initV] = AR_to_SS(coef, C, y); + +max_iter = 1; +fully_observed = 1; +diagQ = 0; +diagR = 0; +[F, H, Q, R, initx, initV, loglik] = ... + learn_kalman(obs, F, H, Q, R, initx, initV, max_iter, diagQ, diagR, fully_observed); + +[coef, C] = SS_to_AR(F, Q, k); +