Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/KPMstats/mixgauss_classifier_train.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/KPMstats/mixgauss_classifier_train.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,33 @@ +function mixgauss = mixgauss_classifier_train(trainFeatures, trainLabels, nc, varargin) +% function mixgauss = mixgauss_classifier_train(trainFeatures, trainLabels, nclusters, varargin) +% trainFeatures(:,i) for i'th example +% trainLabels should be 0,1 +% To evaluate performance on a tets set, use +% mixgauss = mixgauss_classifier_train(trainFeatures, trainLabels, nc, 'testFeatures', tf, 'testLabels', tl) + +[testFeatures, testLabels, max_iter, thresh, cov_type, mu, Sigma, priorC, method, ... + cov_prior, verbose, prune_thresh] = process_options(... + varargin, 'testFeatures', [], 'testLabels', [], ... + 'max_iter', 10, 'thresh', 0.01, 'cov_type', 'diag', ... + 'mu', [], 'Sigma', [], 'priorC', [], 'method', 'kmeans', ... + 'cov_prior', [], 'verbose', 0, 'prune_thresh', 0); + +Nclasses = 2; % max([trainLabels testLabels]) + 1; + +pos = find(trainLabels == 1); +neg = find(trainLabels == 0); + +if verbose, fprintf('fitting pos\n'); end +[mixgauss.pos.mu, mixgauss.pos.Sigma, mixgauss.pos.prior] = ... + mixgauss_em(trainFeatures(:, pos), nc, varargin{:}); + +if verbose, fprintf('fitting neg\n'); end +[mixgauss.neg.mu, mixgauss.neg.Sigma, mixgauss.neg.prior] = ... + mixgauss_em(trainFeatures(:, neg), nc, varargin{:}); + + +if ~isempty(priorC) + mixgauss.priorC = priorC; +else + mixgauss.priorC = normalize([length(pos) length(neg)]); +end