Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/KPMstats/gamma_sample.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/KPMstats/gamma_sample.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,126 @@ +function r = gamrnd(a,b,m,n); +%GAMRND Random matrices from gamma distribution. +% R = GAMRND(A,B) returns a matrix of random numbers chosen +% from the gamma distribution with parameters A and B. +% The size of R is the common size of A and B if both are matrices. +% If either parameter is a scalar, the size of R is the size of the other +% parameter. Alternatively, R = GAMRND(A,B,M,N) returns an M by N matrix. +% +% Some references refer to the gamma distribution +% with a single parameter. This corresponds to GAMRND +% with B = 1. (See Devroye, pages 401-402.) + +% GAMRND uses a rejection or an inversion method depending on the +% value of A. + +% References: +% [1] L. Devroye, "Non-Uniform Random Variate Generation", +% Springer-Verlag, 1986 + +% B.A. Jones 2-1-93 +% Copyright (c) 1993-98 by The MathWorks, Inc. +% $Revision: 1.1.1.1 $ $Date: 2005/04/26 02:29:18 $ + +if nargin < 2, + error('Requires at least two input arguments.'); +end + + +if nargin == 2 + [errorcode rows columns] = rndcheck(2,2,a,b); +end + +if nargin == 3 + [errorcode rows columns] = rndcheck(3,2,a,b,m); +end + +if nargin == 4 + [errorcode rows columns] = rndcheck(4,2,a,b,m,n); +end + +if errorcode > 0 + error('Size information is inconsistent.'); +end + +% Initialize r to zero. +lth = rows*columns; +r = zeros(lth,1); +a = a(:); b = b(:); + +scalara = (length(a) == 1); +if scalara + a = a*ones(lth,1); +end + +scalarb = (length(b) == 1); +if scalarb + b = b*ones(lth,1); +end + +% If a == 1, then gamma is exponential. (Devroye, page 405). +k = find(a == 1); +if any(k) + r(k) = -b(k) .* log(rand(size(k))); +end + + +k = find(a < 1 & a > 0); +% (Devroye, page 418 Johnk's generator) +if any(k) + c = zeros(lth,1); + d = zeros(lth,1); + c(k) = 1 ./ a(k); + d(k) = 1 ./ (1 - a(k)); + accept = k; + while ~isempty(accept) + u = rand(size(accept)); + v = rand(size(accept)); + x = u .^ c(accept); + y = v .^ d(accept); + k1 = find((x + y) <= 1); + if ~isempty(k1) + e = -log(rand(size(k1))); + r(accept(k1)) = e .* x(k1) ./ (x(k1) + y(k1)); + accept(k1) = []; + end + end + r(k) = r(k) .* b(k); +end + +% Use a rejection method for a > 1. +k = find(a > 1); +% (Devroye, page 410 Best's algorithm) +bb = zeros(size(a)); +c = bb; +if any(k) + bb(k) = a(k) - 1; + c(k) = 3 * a(k) - 3/4; + accept = k; + count = 1; + while ~isempty(accept) + m = length(accept); + u = rand(m,1); + v = rand(m,1); + w = u .* (1 - u); + y = sqrt(c(accept) ./ w) .* (u - 0.5); + x = bb(accept) + y; + k1 = find(x >= 0); + if ~isempty(k1) + z = 64 * (w .^ 3) .* (v .^ 2); + k2 = (z(k1) <= (1 - 2 * (y(k1) .^2) ./ x(k1))); + k3 = k1(find(k2)); + r(accept(k3)) = x(k3); + k4 = k1(find(~k2)); + k5 = k4(find(log(z(k4)) <= (2*(bb(accept(k4)).*log(x(k4)./bb(accept(k4)))-y(k4))))); + r(accept(k5)) = x(k5); + omit = [k3; k5]; + accept(omit) = []; + end + end + r(k) = r(k) .* b(k); +end + +% Return NaN if a or b is not positive. +r(b <= 0 | a <= 0) = NaN; + +r = reshape(r,rows,columns);