Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/KPMstats/clg_Mstep.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/KPMstats/clg_Mstep.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,203 @@ +function [mu, Sigma, B] = clg_Mstep(w, Y, YY, YTY, X, XX, XY, varargin) +% MSTEP_CLG Compute ML/MAP estimates for a conditional linear Gaussian +% [mu, Sigma, B] = Mstep_clg(w, Y, YY, YTY, X, XX, XY, varargin) +% +% We fit P(Y|X,Q=i) = N(Y; B_i X + mu_i, Sigma_i) +% and w(i,t) = p(M(t)=i|y(t)) = posterior responsibility +% See www.ai.mit.edu/~murphyk/Papers/learncg.pdf. +% +% See process_options for how to specify the input arguments. +% +% INPUTS: +% w(i) = sum_t w(i,t) = responsibilities for each mixture component +% If there is only one mixture component (i.e., Q does not exist), +% then w(i) = N = nsamples, and +% all references to i can be replaced by 1. +% Y(:,i) = sum_t w(i,t) y(:,t) = weighted observations +% YY(:,:,i) = sum_t w(i,t) y(:,t) y(:,t)' = weighted outer product +% YTY(i) = sum_t w(i,t) y(:,t)' y(:,t) = weighted inner product +% You only need to pass in YTY if Sigma is to be estimated as spherical. +% +% In the regression context, we must also pass in the following +% X(:,i) = sum_t w(i,t) x(:,t) = weighted inputs +% XX(:,:,i) = sum_t w(i,t) x(:,t) x(:,t)' = weighted outer product +% XY(i) = sum_t w(i,t) x(:,t) y(:,t)' = weighted outer product +% +% Optional inputs (default values in []) +% +% 'cov_type' - 'full', 'diag' or 'spherical' ['full'] +% 'tied_cov' - 1 (Sigma) or 0 (Sigma_i) [0] +% 'clamped_cov' - pass in clamped value, or [] if unclamped [ [] ] +% 'clamped_mean' - pass in clamped value, or [] if unclamped [ [] ] +% 'clamped_weights' - pass in clamped value, or [] if unclamped [ [] ] +% 'cov_prior' - added to Sigma(:,:,i) to ensure psd [0.01*eye(d,d,Q)] +% +% If cov is tied, Sigma has size d*d. +% But diagonal and spherical covariances are represented in full size. + +[cov_type, tied_cov, ... + clamped_cov, clamped_mean, clamped_weights, cov_prior, ... + xs, ys, post] = ... + process_options(varargin, ... + 'cov_type', 'full', 'tied_cov', 0, 'clamped_cov', [], 'clamped_mean', [], ... + 'clamped_weights', [], 'cov_prior', [], ... + 'xs', [], 'ys', [], 'post', []); + +[Ysz Q] = size(Y); + +if isempty(X) % no regression + %B = []; + B2 = zeros(Ysz, 1, Q); + for i=1:Q + B(:,:,i) = B2(:,1:0,i); % make an empty array of size Ysz x 0 x Q + end + [mu, Sigma] = mixgauss_Mstep(w, Y, YY, YTY, varargin{:}); + return; +end + + +N = sum(w); +if isempty(cov_prior) + cov_prior = 0.01*repmat(eye(Ysz,Ysz), [1 1 Q]); +end +%YY = YY + cov_prior; % regularize the scatter matrix + +% Set any zero weights to one before dividing +% This is valid because w(i)=0 => Y(:,i)=0, etc +w = w + (w==0); + +Xsz = size(X,1); +% Append 1 to X to get Z +ZZ = zeros(Xsz+1, Xsz+1, Q); +ZY = zeros(Xsz+1, Ysz, Q); +for i=1:Q + ZZ(:,:,i) = [XX(:,:,i) X(:,i); + X(:,i)' w(i)]; + ZY(:,:,i) = [XY(:,:,i); + Y(:,i)']; +end + + +%%% Estimate mean and regression + +if ~isempty(clamped_weights) & ~isempty(clamped_mean) + B = clamped_weights; + mu = clamped_mean; +end +if ~isempty(clamped_weights) & isempty(clamped_mean) + B = clamped_weights; + % eqn 5 + mu = zeros(Ysz, Q); + for i=1:Q + mu(:,i) = (Y(:,i) - B(:,:,i)*X(:,i)) / w(i); + end +end +if isempty(clamped_weights) & ~isempty(clamped_mean) + mu = clamped_mean; + % eqn 3 + B = zeros(Ysz, Xsz, Q); + for i=1:Q + tmp = XY(:,:,i)' - mu(:,i)*X(:,i)'; + %B(:,:,i) = tmp * inv(XX(:,:,i)); + B(:,:,i) = (XX(:,:,i) \ tmp')'; + end +end +if isempty(clamped_weights) & isempty(clamped_mean) + mu = zeros(Ysz, Q); + B = zeros(Ysz, Xsz, Q); + % Nothing is clamped, so we must estimate B and mu jointly + for i=1:Q + % eqn 9 + if rcond(ZZ(:,:,i)) < 1e-10 + sprintf('clg_Mstep warning: ZZ(:,:,%d) is ill-conditioned', i); + % probably because there are too few cases for a high-dimensional input + ZZ(:,:,i) = ZZ(:,:,i) + 1e-5*eye(Xsz+1); + end + %A = ZY(:,:,i)' * inv(ZZ(:,:,i)); + A = (ZZ(:,:,i) \ ZY(:,:,i))'; + B(:,:,i) = A(:, 1:Xsz); + mu(:,i) = A(:, Xsz+1); + end +end + +if ~isempty(clamped_cov) + Sigma = clamped_cov; + return; +end + + +%%% Estimate covariance + +% Spherical +if cov_type(1)=='s' + if ~tied_cov + Sigma = zeros(Ysz, Ysz, Q); + for i=1:Q + % eqn 16 + A = [B(:,:,i) mu(:,i)]; + %s = trace(YTY(i) + A'*A*ZZ(:,:,i) - 2*A*ZY(:,:,i)) / (Ysz*w(i)); % wrong! + s = (YTY(i) + trace(A'*A*ZZ(:,:,i)) - trace(2*A*ZY(:,:,i))) / (Ysz*w(i)); + Sigma(:,:,i) = s*eye(Ysz,Ysz); + + %%%%%%%%%%%%%%%%%%% debug + if ~isempty(xs) + [nx T] = size(xs); + zs = [xs; ones(1,T)]; + yty = 0; + zAAz = 0; + yAz = 0; + for t=1:T + yty = yty + ys(:,t)'*ys(:,t) * post(i,t); + zAAz = zAAz + zs(:,t)'*A'*A*zs(:,t)*post(i,t); + yAz = yAz + ys(:,t)'*A*zs(:,t)*post(i,t); + end + assert(approxeq(yty, YTY(i))) + assert(approxeq(zAAz, trace(A'*A*ZZ(:,:,i)))) + assert(approxeq(yAz, trace(A*ZY(:,:,i)))) + s2 = (yty + zAAz - 2*yAz) / (Ysz*w(i)); + assert(approxeq(s,s2)) + end + %%%%%%%%%%%%%%% end debug + + end + else + S = 0; + for i=1:Q + % eqn 18 + A = [B(:,:,i) mu(:,i)]; + S = S + trace(YTY(i) + A'*A*ZZ(:,:,i) - 2*A*ZY(:,:,i)); + end + Sigma = repmat(S / (N*Ysz), [1 1 Q]); + end +else % Full/diagonal + if ~tied_cov + Sigma = zeros(Ysz, Ysz, Q); + for i=1:Q + A = [B(:,:,i) mu(:,i)]; + % eqn 10 + SS = (YY(:,:,i) - ZY(:,:,i)'*A' - A*ZY(:,:,i) + A*ZZ(:,:,i)*A') / w(i); + if cov_type(1)=='d' + Sigma(:,:,i) = diag(diag(SS)); + else + Sigma(:,:,i) = SS; + end + end + else % tied + SS = zeros(Ysz, Ysz); + for i=1:Q + A = [B(:,:,i) mu(:,i)]; + % eqn 13 + SS = SS + (YY(:,:,i) - ZY(:,:,i)'*A' - A*ZY(:,:,i) + A*ZZ(:,:,i)*A'); + end + SS = SS / N; + if cov_type(1)=='d' + Sigma = diag(diag(SS)); + else + Sigma = SS; + end + Sigma = repmat(Sigma, [1 1 Q]); + end +end + +Sigma = Sigma + cov_prior; +