Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/HMM/mhmmParzen_train_observed.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/HMM/mhmmParzen_train_observed.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,37 @@ +function [initState, transmat, mu, Nproto, pick] = mhmmParzen_train_observed(obsData, hiddenData, ... + nstates, maxNproto, varargin) +% mhmmParzentrain_observed with mixture of Gaussian outputs from fully observed sequences +% function [initState, transmat, mu, Nproto] = mhmm_train_observed_parzen(obsData, hiddenData, ... +% nstates, maxNproto) +% +% +% INPUT +% If all sequences have the same length +% obsData(:,t,ex) +% hiddenData(ex,t) - must be ROW vector if only one sequence +% If sequences have different lengths, we use cell arrays +% obsData{ex}(:,t) +% hiddenData{ex}(t) +% +% Optional argumnets +% dirichletPriorWeight - for smoothing transition matrix counts +% mkSymmetric +% +% Output +% mu(:,q) +% Nproto(q) is the number of prototypes (mixture components) chosen for state q + +[transmat, initState] = transmat_train_observed(... + hiddenData, nstates, varargin{:}); + +% convert to obsData(:,t*nex) +if ~iscell(obsData) + [D T Nex] = size(obsData); + obsData = reshape(obsData, D, T*Nex); +else + obsData = cat(2, obsData{:}); + hiddenData = cat(2, hiddenData{:}); +end +[mu, Nproto, pick] = parzen_fit_select_unif(obsData, hiddenData(:), maxNproto); + +