Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/HMM/fwdback.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/HMM/fwdback.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,197 @@ +function [alpha, beta, gamma, loglik, xi_summed, gamma2] = fwdback(init_state_distrib, ... + transmat, obslik, varargin) +% FWDBACK Compute the posterior probs. in an HMM using the forwards backwards algo. +% +% [alpha, beta, gamma, loglik, xi, gamma2] = fwdback(init_state_distrib, transmat, obslik, ...) +% +% Notation: +% Y(t) = observation, Q(t) = hidden state, M(t) = mixture variable (for MOG outputs) +% A(t) = discrete input (action) (for POMDP models) +% +% INPUT: +% init_state_distrib(i) = Pr(Q(1) = i) +% transmat(i,j) = Pr(Q(t) = j | Q(t-1)=i) +% or transmat{a}(i,j) = Pr(Q(t) = j | Q(t-1)=i, A(t-1)=a) if there are discrete inputs +% obslik(i,t) = Pr(Y(t)| Q(t)=i) +% (Compute obslik using eval_pdf_xxx on your data sequence first.) +% +% Optional parameters may be passed as 'param_name', param_value pairs. +% Parameter names are shown below; default values in [] - if none, argument is mandatory. +% +% For HMMs with MOG outputs: if you want to compute gamma2, you must specify +% 'obslik2' - obslik(i,j,t) = Pr(Y(t)| Q(t)=i,M(t)=j) [] +% 'mixmat' - mixmat(i,j) = Pr(M(t) = j | Q(t)=i) [] +% +% For HMMs with discrete inputs: +% 'act' - act(t) = action performed at step t +% +% Optional arguments: +% 'fwd_only' - if 1, only do a forwards pass and set beta=[], gamma2=[] [0] +% 'scaled' - if 1, normalize alphas and betas to prevent underflow [1] +% 'maximize' - if 1, use max-product instead of sum-product [0] +% +% OUTPUTS: +% alpha(i,t) = p(Q(t)=i | y(1:t)) (or p(Q(t)=i, y(1:t)) if scaled=0) +% beta(i,t) = p(y(t+1:T) | Q(t)=i)*p(y(t+1:T)|y(1:t)) (or p(y(t+1:T) | Q(t)=i) if scaled=0) +% gamma(i,t) = p(Q(t)=i | y(1:T)) +% loglik = log p(y(1:T)) +% xi(i,j,t-1) = p(Q(t-1)=i, Q(t)=j | y(1:T)) - NO LONGER COMPUTED +% xi_summed(i,j) = sum_{t=}^{T-1} xi(i,j,t) - changed made by Herbert Jaeger +% gamma2(j,k,t) = p(Q(t)=j, M(t)=k | y(1:T)) (only for MOG outputs) +% +% If fwd_only = 1, these become +% alpha(i,t) = p(Q(t)=i | y(1:t)) +% beta = [] +% gamma(i,t) = p(Q(t)=i | y(1:t)) +% xi(i,j,t-1) = p(Q(t-1)=i, Q(t)=j | y(1:t)) +% gamma2 = [] +% +% Note: we only compute xi if it is requested as a return argument, since it can be very large. +% Similarly, we only compute gamma2 on request (and if using MOG outputs). +% +% Examples: +% +% [alpha, beta, gamma, loglik] = fwdback(pi, A, multinomial_prob(sequence, B)); +% +% [B, B2] = mixgauss_prob(data, mu, Sigma, mixmat); +% [alpha, beta, gamma, loglik, xi, gamma2] = fwdback(pi, A, B, 'obslik2', B2, 'mixmat', mixmat); + +if nargout >= 5, compute_xi = 1; else compute_xi = 0; end +if nargout >= 6, compute_gamma2 = 1; else compute_gamma2 = 0; end + +[obslik2, mixmat, fwd_only, scaled, act, maximize, compute_xi, compute_gamma2] = ... + process_options(varargin, ... + 'obslik2', [], 'mixmat', [], ... + 'fwd_only', 0, 'scaled', 1, 'act', [], 'maximize', 0, ... + 'compute_xi', compute_xi, 'compute_gamma2', compute_gamma2); + +[Q T] = size(obslik); + +if isempty(obslik2) + compute_gamma2 = 0; +end + +if isempty(act) + act = ones(1,T); + transmat = { transmat } ; +end + +scale = ones(1,T); + +% scale(t) = Pr(O(t) | O(1:t-1)) = 1/c(t) as defined by Rabiner (1989). +% Hence prod_t scale(t) = Pr(O(1)) Pr(O(2)|O(1)) Pr(O(3) | O(1:2)) ... = Pr(O(1), ... ,O(T)) +% or log P = sum_t log scale(t). +% Rabiner suggests multiplying beta(t) by scale(t), but we can instead +% normalise beta(t) - the constants will cancel when we compute gamma. + +loglik = 0; + +alpha = zeros(Q,T); +gamma = zeros(Q,T); +if compute_xi + xi_summed = zeros(Q,Q); +else + xi_summed = []; +end + +%%%%%%%%% Forwards %%%%%%%%%% + +t = 1; +alpha(:,1) = init_state_distrib(:) .* obslik(:,t); +if scaled + %[alpha(:,t), scale(t)] = normaliseC(alpha(:,t)); + [alpha(:,t), scale(t)] = normalise(alpha(:,t)); +end +assert(approxeq(sum(alpha(:,t)),1)) +for t=2:T + %trans = transmat(:,:,act(t-1))'; + trans = transmat{act(t-1)}; + if maximize + m = max_mult(trans', alpha(:,t-1)); + %A = repmat(alpha(:,t-1), [1 Q]); + %m = max(trans .* A, [], 1); + else + m = trans' * alpha(:,t-1); + end + alpha(:,t) = m(:) .* obslik(:,t); + if scaled + %[alpha(:,t), scale(t)] = normaliseC(alpha(:,t)); + [alpha(:,t), scale(t)] = normalise(alpha(:,t)); + end + if compute_xi & fwd_only % useful for online EM + %xi(:,:,t-1) = normaliseC((alpha(:,t-1) * obslik(:,t)') .* trans); + xi_summed = xi_summed + normalise((alpha(:,t-1) * obslik(:,t)') .* trans); + end + assert(approxeq(sum(alpha(:,t)),1)) +end +if scaled + if any(scale==0) + loglik = -inf; + else + loglik = sum(log(scale)); + end +else + loglik = log(sum(alpha(:,T))); +end + +if fwd_only + gamma = alpha; + beta = []; + gamma2 = []; + return; +end + +%%%%%%%%% Backwards %%%%%%%%%% + +beta = zeros(Q,T); +if compute_gamma2 + M = size(mixmat, 2); + gamma2 = zeros(Q,M,T); +else + gamma2 = []; +end + +beta(:,T) = ones(Q,1); +%gamma(:,T) = normaliseC(alpha(:,T) .* beta(:,T)); +gamma(:,T) = normalise(alpha(:,T) .* beta(:,T)); +t=T; +if compute_gamma2 + denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing + gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]); + %gamma2(:,:,t) = normaliseC(obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M])); % wrong! +end +for t=T-1:-1:1 + b = beta(:,t+1) .* obslik(:,t+1); + %trans = transmat(:,:,act(t)); + trans = transmat{act(t)}; + if maximize + B = repmat(b(:)', Q, 1); + beta(:,t) = max(trans .* B, [], 2); + else + beta(:,t) = trans * b; + end + if scaled + %beta(:,t) = normaliseC(beta(:,t)); + beta(:,t) = normalise(beta(:,t)); + end + %gamma(:,t) = normaliseC(alpha(:,t) .* beta(:,t)); + gamma(:,t) = normalise(alpha(:,t) .* beta(:,t)); + if compute_xi + %xi(:,:,t) = normaliseC((trans .* (alpha(:,t) * b'))); + xi_summed = xi_summed + normalise((trans .* (alpha(:,t) * b'))); + end + if compute_gamma2 + denom = obslik(:,t) + (obslik(:,t)==0); % replace 0s with 1s before dividing + gamma2(:,:,t) = obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M]) ./ repmat(denom, [1 M]); + %gamma2(:,:,t) = normaliseC(obslik2(:,:,t) .* mixmat .* repmat(gamma(:,t), [1 M])); + end +end + +% We now explain the equation for gamma2 +% Let zt=y(1:t-1,t+1:T) be all observations except y(t) +% gamma2(Q,M,t) = P(Qt,Mt|yt,zt) = P(yt|Qt,Mt,zt) P(Qt,Mt|zt) / P(yt|zt) +% = P(yt|Qt,Mt) P(Mt|Qt) P(Qt|zt) / P(yt|zt) +% Now gamma(Q,t) = P(Qt|yt,zt) = P(yt|Qt) P(Qt|zt) / P(yt|zt) +% hence +% P(Qt,Mt|yt,zt) = P(yt|Qt,Mt) P(Mt|Qt) [P(Qt|yt,zt) P(yt|zt) / P(yt|Qt)] / P(yt|zt) +% = P(yt|Qt,Mt) P(Mt|Qt) P(Qt|yt,zt) / P(yt|Qt)