Mercurial > hg > camir-aes2014
diff reproduce_AES53rd/rerun_svm_table3/svm_table3.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/reproduce_AES53rd/rerun_svm_table3/svm_table3.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,76 @@ +% --- +% this script trains similarity measures using RBM and SVM as in Table 3 +% please note that the RBM training is a probabilistic process. +% Here, training is done on 20 random initialisations of RBM features , +% the test results corresponding to the RBM with the best training result are then +% returned. +% --- + +% --- +% vary feature parameters of mixed features +% --- + +global globalvars; +globalvars.debug = 3; + +ftype = 'MTTMixedFeatureSonRBM'; %'MTTMixedFeatureStober11Genre'; + +fparams_all = struct(... + ... % --- + ... % these are SONfeatRaw parameters + ... % --- + 'son_filename',{{'rel_music_raw_features+simdata_ISMIR12.mat'}}, ... + 'son_conf', 1:5, ... + ... % --- + ... % Following: RBM params + ... % --- + 'norm_pre_rbm', 0, ... % norm before RBM? + 'norm_post_rbm',0, ... % norm before RBM? + 'rbm_hidNum',[1000], ... % number of hidden units % 500 + 'rbm_eNum', 100, ... + 'rbm_bNum', 1, ... + 'rbm_gNum', 1, ... + 'rbm_lrate1' , [0.05], ... % initial learning rate % 0.01 + 'rbm_lrate2', [0.10], ... % learning rate, %0.05 + 'rbm_momentum', [0.1], ... % 0.5 + 'rbm_cost', [0.00002], ... % cost function + 'rbm_N', 50, ... + 'rbm_MAX_INC', 10 ... + ); + +% --- +% vary parameters for svmlight +% --- + +trainparams_all = struct(... + 'C', [1], ...% + 'weighted', [0], ... + 'dataset', {{'comp_partBinData_ISMIR12_01.mat'}}, ... + 'inctrain', 0 ... + ... % this optional + ... %'deltafun', {{'conv_subspace_delta'}}, ... + ... %'deltafun_params', {{{[1],[0]},{[5],[1]},{[10],[1]},{[20],[1]},{[30],[1]},{[50],[1]},{[70],[1]}}} ... % normalisation improves results + ); + +% set training function +trainfun = @svmlight_wrapper; + + +% create test directory +akt_dir = migrate_to_test_dir(); + + +% call eval +out = test_generic_features_parameters_crossval... + (fparams_all, trainparams_all, trainfun, ftype); + +% --- +% check training results and select best RBM according to trainign data +% --- +svm_train_performances = [out(:).mean_ok_train]; +[bestTrain, idx] = max(svm_train_performances(1,:)); +result = out(idx); + +% get corresponding test performance +svm_test_performance = result.mean_ok_test(1,:); +fprintf('SVM RBM Test/Train Result=%f / %f\n',svm_test_performance*100,bestTrain*100);