diff toolboxes/distance_learning/mlr/mlr_train.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/distance_learning/mlr/mlr_train.m	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,507 @@
+function [W, Xi, Diagnostics] = mlr_train(X, Y, Cslack, varargin)
+%
+%   [W, Xi, D] = mlr_train(X, Y, C,...)
+%
+%       X = d*n data matrix
+%       Y = either n-by-1 label of vectors
+%           OR
+%           n-by-2 cell array where 
+%               Y{q,1} contains relevant indices for q, and
+%               Y{q,2} contains irrelevant indices for q
+%       
+%       C >= 0 slack trade-off parameter (default=1)
+%
+%       W   = the learned metric
+%       Xi  = slack value on the learned metric
+%       D   = diagnostics
+%
+%   Optional arguments:
+%
+%   [W, Xi, D] = mlr_train(X, Y, C, LOSS)
+%       where LOSS is one of:
+%           'AUC':      Area under ROC curve (default)
+%           'KNN':      KNN accuracy
+%           'Prec@k':   Precision-at-k
+%           'MAP':      Mean Average Precision
+%           'MRR':      Mean Reciprocal Rank
+%           'NDCG':     Normalized Discounted Cumulative Gain
+%
+%   [W, Xi, D] = mlr_train(X, Y, C, LOSS, k)
+%       where k is the number of neighbors for Prec@k or NDCG
+%       (default=3)
+%
+%   [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG)
+%       where REG defines the regularization on W, and is one of:
+%           0:          no regularization
+%           1:          1-norm: trace(W)            (default)
+%           2:          2-norm: trace(W' * W)
+%           3:          Kernel: trace(W * X), assumes X is square and positive-definite
+%
+%   [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal)
+%       Diagonal = 0:   learn a full d-by-d W       (default)
+%       Diagonal = 1:   learn diagonally-constrained W (d-by-1)
+%       
+%   [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal, B)
+%       where B > 0 enables stochastic optimization with batch size B
+%
+% // added by Daniel Wolff
+%   [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal, B, CC)
+%       Set ConstraintClock to CC (default: 20, 100)
+% 
+%   [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal, B, CC, E)
+%       Set ConstraintClock to E (default: 1e-3)
+%
+
+    TIME_START = tic();
+
+    global C;
+    C = Cslack;
+
+    [d,n,m] = size(X);
+
+    if m > 1
+        MKL = 1;
+    else
+        MKL = 0;
+    end
+
+    if nargin < 3
+        C = 1;
+    end
+
+    %%%
+    % Default options:
+
+    global CP SO PSI REG FEASIBLE LOSS DISTANCE SETDISTANCE CPGRADIENT STRUCTKERNEL DUALW INIT;
+
+    global FEASIBLE_COUNT;
+    FEASIBLE_COUNT = 0;
+
+    CP          = @cuttingPlaneFull;
+    SO          = @separationOracleAUC;
+    PSI         = @metricPsiPO;
+
+    if ~MKL
+        INIT        = @initializeFull;
+        REG         = @regularizeTraceFull;
+        STRUCTKERNEL= @structKernelLinear;
+        DUALW       = @dualWLinear;
+        FEASIBLE    = @feasibleFull;
+        CPGRADIENT  = @cpGradientFull;
+        DISTANCE    = @distanceFull;
+        SETDISTANCE = @setDistanceFull;
+        LOSS        = @lossHinge;
+        Regularizer = 'Trace';
+    else
+        INIT        = @initializeFullMKL;
+        REG         = @regularizeMKLFull;
+        STRUCTKERNEL= @structKernelMKL;
+        DUALW       = @dualWMKL;
+        FEASIBLE    = @feasibleFullMKL;
+        CPGRADIENT  = @cpGradientFullMKL;
+        DISTANCE    = @distanceFullMKL;
+        SETDISTANCE = @setDistanceFullMKL;
+        LOSS        = @lossHingeFullMKL;
+        Regularizer = 'Trace';
+    end
+
+    
+    Loss        = 'AUC';
+    Feature     = 'metricPsiPO';
+
+
+    %%%
+    % Default k for prec@k, ndcg
+    k           = 3;
+
+    %%%
+    % Stochastic violator selection?
+    STOCHASTIC  = 0;
+    batchSize   = n;
+    SAMPLES     = 1:n;
+
+
+    if nargin > 3
+        switch lower(varargin{1})
+            case {'auc'}
+                SO          = @separationOracleAUC;
+                PSI         = @metricPsiPO;
+                Loss        = 'AUC';
+                Feature     = 'metricPsiPO';
+            case {'knn'}
+                SO          = @separationOracleKNN;
+                PSI         = @metricPsiPO;
+                Loss        = 'KNN';
+                Feature     = 'metricPsiPO';
+            case {'prec@k'}
+                SO          = @separationOraclePrecAtK;
+                PSI         = @metricPsiPO;
+                Loss        = 'Prec@k';
+                Feature     = 'metricPsiPO';
+            case {'map'}
+                SO  = @separationOracleMAP;
+                PSI = @metricPsiPO;
+                Loss        = 'MAP';
+                Feature     = 'metricPsiPO';
+            case {'mrr'}
+                SO          = @separationOracleMRR;
+                PSI         = @metricPsiPO;
+                Loss        = 'MRR';
+                Feature     = 'metricPsiPO';
+            case {'ndcg'}
+                SO          = @separationOracleNDCG;
+                PSI         = @metricPsiPO;
+                Loss        = 'NDCG';
+                Feature     = 'metricPsiPO';
+            otherwise
+                error('MLR:LOSS', ...
+                    'Unknown loss function: %s', varargin{1});
+        end
+    end
+
+    if nargin > 4
+        k = varargin{2};
+    end
+
+    Diagonal = 0;
+    if nargin > 6 & varargin{4} > 0
+        Diagonal = varargin{4};
+
+        if ~MKL
+            INIT        = @initializeDiag;
+            REG         = @regularizeTraceDiag;
+            STRUCTKERNEL= @structKernelDiag;
+            DUALW       = @dualWDiag;
+            FEASIBLE    = @feasibleDiag;
+            CPGRADIENT  = @cpGradientDiag;
+            DISTANCE    = @distanceDiag;
+            SETDISTANCE = @setDistanceDiag;
+            Regularizer = 'Trace';
+        else
+            INIT        = @initializeDiagMKL;
+            REG         = @regularizeMKLDiag;
+            STRUCTKERNEL= @structKernelDiagMKL;
+            DUALW       = @dualWDiagMKL;
+            FEASIBLE    = @feasibleDiagMKL;
+            CPGRADIENT  = @cpGradientDiagMKL;
+            DISTANCE    = @distanceDiagMKL;
+            SETDISTANCE = @setDistanceDiagMKL;
+            LOSS        = @lossHingeDiagMKL;
+            Regularizer = 'Trace';
+        end
+    end
+
+    if nargin > 5
+        switch(varargin{3})
+            case {0}
+                REG         = @regularizeNone;
+                Regularizer = 'None';
+
+            case {1}
+                if MKL
+                    if Diagonal == 0
+                        REG         = @regularizeMKLFull;
+                        STRUCTKERNEL= @structKernelMKL;
+                        DUALW       = @dualWMKL;
+                    elseif Diagonal == 1
+                        REG         = @regularizeMKLDiag;
+                        STRUCTKERNEL= @structKernelDiagMKL;
+                        DUALW       = @dualWDiagMKL;
+                    end
+                else
+                    if Diagonal 
+                        REG         = @regularizeTraceDiag;
+                        STRUCTKERNEL= @structKernelDiag;
+                        DUALW       = @dualWDiag;
+                    else
+                        REG         = @regularizeTraceFull;
+                        STRUCTKERNEL= @structKernelLinear;
+                        DUALW       = @dualWLinear;
+                    end
+                end
+                Regularizer = 'Trace';
+
+            case {2}
+                if Diagonal
+                    REG         = @regularizeTwoDiag;
+                else
+                    REG         = @regularizeTwoFull;
+                end
+                Regularizer = '2-norm';
+                error('MLR:REGULARIZER', '2-norm regularization no longer supported');
+                
+
+            case {3}
+                if MKL
+                    if Diagonal == 0
+                        REG         = @regularizeMKLFull;
+                        STRUCTKERNEL= @structKernelMKL;
+                        DUALW       = @dualWMKL;
+                    elseif Diagonal == 1
+                        REG         = @regularizeMKLDiag;
+                        STRUCTKERNEL= @structKernelDiagMKL;
+                        DUALW       = @dualWDiagMKL;
+                    end
+                else
+                    if Diagonal
+                        REG         = @regularizeMKLDiag;
+                        STRUCTKERNEL= @structKernelDiagMKL;
+                        DUALW       = @dualWDiagMKL;
+                    else
+                        REG         = @regularizeKernel;
+                        STRUCTKERNEL= @structKernelMKL;
+                        DUALW       = @dualWMKL;
+                    end
+                end
+                Regularizer = 'Kernel';
+
+            otherwise
+                error('MLR:REGULARIZER', ... 
+                    'Unknown regularization: %s', varargin{3});
+        end
+    end
+
+
+    % Are we in stochastic optimization mode?
+    if nargin > 7 && varargin{5} > 0
+        if varargin{5} < n
+            STOCHASTIC  = 1;
+            CP          = @cuttingPlaneRandom;
+            batchSize   = varargin{5};
+        end
+    end
+
+    % Algorithm
+    %
+    % Working <- []
+    %
+    % repeat:
+    %   (W, Xi) <- solver(X, Y, C, Working)
+    %
+    %   for i = 1:|X|
+    %       y^_i <- argmax_y^ ( Delta(y*_i, y^) + w' Psi(x_i, y^) )
+    %
+    %   Working <- Working + (y^_1,y^_2,...,y^_n)
+    % until mean(Delta(y*_i, y_i)) - mean(w' (Psi(x_i,y_i) - Psi(x_i,y^_i))) 
+    %           <= Xi + epsilon
+
+    global DEBUG;
+    
+    if isempty(DEBUG)
+        DEBUG = 0;
+    end
+
+    %%%
+    % Timer to eliminate old constraints
+        
+    %%%
+    % Timer to eliminate old constraints
+    ConstraintClock = 100; % standard: 100
+    
+    if nargin > 8 && varargin{6} > 0
+        ConstraintClock = varargin{6};
+    end
+    
+    %%%
+    % Convergence criteria for worst-violated constraint
+    E = 1e-3;
+    if nargin > 9 && varargin{7} > 0
+        E = varargin{7};
+    end
+    
+    
+    %XXX:    2012-01-31 21:29:50 by Brian McFee <bmcfee@cs.ucsd.edu>
+    % no longer belongs here
+    % Initialize
+    W           = INIT(X);
+
+
+    global ADMM_Z ADMM_U RHO;
+    ADMM_Z      = W;
+    ADMM_U      = 0 * ADMM_Z;
+
+    %%%
+    % Augmented lagrangian factor
+    RHO = 1;
+
+    ClassScores = [];
+
+    if isa(Y, 'double')
+        Ypos        = [];
+        Yneg        = [];
+        ClassScores = synthesizeRelevance(Y);
+
+    elseif isa(Y, 'cell') && size(Y,1) == n && size(Y,2) == 2
+         dbprint(2, 'Using supplied Ypos/synthesized Yneg');
+        Ypos        = Y(:,1);
+        Yneg        = Y(:,2);
+
+        % Compute the valid samples
+        SAMPLES     = find( ~(cellfun(@isempty, Y(:,1)) | cellfun(@isempty, Y(:,2))));
+    elseif isa(Y, 'cell') && size(Y,1) == n && size(Y,2) == 1
+        dbprint(2, 'Using supplied Ypos/synthesized Yneg');
+        Ypos        = Y(:,1);
+        Yneg        = [];
+        SAMPLES     = find( ~(cellfun(@isempty, Y(:,1))));
+    else
+        error('MLR:LABELS', 'Incorrect format for Y.');
+    end
+
+    %%
+    % If we don't have enough data to make the batch, cut the batch
+    batchSize = min([batchSize, length(SAMPLES)]);
+
+
+    Diagnostics = struct(   'loss',                 Loss, ...           % Which loss are we optimizing?
+                            'feature',              Feature, ...        % Which ranking feature is used?
+                            'k',                    k, ...              % What is the ranking length?
+                            'regularizer',          Regularizer, ...    % What regularization is used?
+                            'diagonal',             Diagonal, ...       % 0 for full metric, 1 for diagonal
+                            'num_calls_SO',         0, ...              % Calls to separation oracle
+                            'num_calls_solver',     0, ...              % Calls to solver
+                            'time_SO',              0, ...              % Time in separation oracle
+                            'time_solver',          0, ...              % Time in solver
+                            'time_total',           0, ...              % Total time
+                            'f',                    [], ...             % Objective value
+                            'num_steps',            [], ...             % Number of steps for each solver run
+                            'num_constraints',      [], ...             % Number of constraints for each run
+                            'Xi',                   [], ...             % Slack achieved for each run
+                            'Delta',                [], ...             % Mean loss for each SO call
+                            'gap',                  [], ...             % Gap between loss and slack
+                            'C',                    C, ...              % Slack trade-off
+                            'epsilon',              E, ...              % Convergence threshold
+                            'feasible_count',       FEASIBLE_COUNT, ... % Counter for # svd's
+                            'constraint_timer',     ConstraintClock);   % Time before evicting old constraints
+
+
+
+    global PsiR;
+    global PsiClock;
+
+    PsiR        = {};
+    PsiClock    = [];
+
+    Xi          = -Inf;
+    Margins     = [];
+    H           = [];
+    Q           = [];
+
+    if STOCHASTIC
+        dbprint(1, 'STOCHASTIC OPTIMIZATION: Batch size is %d/%d', batchSize, n);
+    end
+
+    MAXITER = 200;
+%     while 1
+    while Diagnostics.num_calls_solver < MAXITER
+        dbprint(2, 'Round %03d', Diagnostics.num_calls_solver);
+        % Generate a constraint set
+        Termination = 0;
+
+
+        dbprint(2, 'Calling separation oracle...');
+
+        [PsiNew, Mnew, SO_time]     = CP(k, X, W, Ypos, Yneg, batchSize, SAMPLES, ClassScores);
+        Termination                 = LOSS(W, PsiNew, Mnew, 0);
+
+        Diagnostics.num_calls_SO    = Diagnostics.num_calls_SO + 1;
+        Diagnostics.time_SO         = Diagnostics.time_SO + SO_time;
+
+        Margins     = cat(1, Margins,   Mnew);
+        PsiR        = cat(1, PsiR,      PsiNew);
+        PsiClock    = cat(1, PsiClock,  0);
+        H           = expandKernel(H);
+        Q           = expandRegularizer(Q, X, W);
+
+
+        dbprint(2, '\n\tActive constraints    : %d',            length(PsiClock));
+        dbprint(2, '\t           Mean loss  : %0.4f',           Mnew);
+        dbprint(2, '\t  Current loss Xi     : %0.4f',           Xi);
+        dbprint(2, '\t  Termination -Xi < E : %0.4f <? %.04f\n', Termination - Xi, E);
+        
+        Diagnostics.gap     = cat(1, Diagnostics.gap,   Termination - Xi);
+        Diagnostics.Delta   = cat(1, Diagnostics.Delta, Mnew);
+
+        if Termination <= Xi + E
+            dbprint(2, 'Done.');
+            break;
+        end
+        
+        dbprint(2, 'Calling solver...');
+        PsiClock                        = PsiClock + 1;
+        Solver_time                     = tic();
+            [W, Xi, Dsolver]            = mlr_admm(C, X, Margins, H, Q);
+        Diagnostics.time_solver         = Diagnostics.time_solver + toc(Solver_time);
+        Diagnostics.num_calls_solver    = Diagnostics.num_calls_solver + 1;
+
+        Diagnostics.Xi                  = cat(1, Diagnostics.Xi, Xi);
+        Diagnostics.f                   = cat(1, Diagnostics.f, Dsolver.f);
+        Diagnostics.num_steps           = cat(1, Diagnostics.num_steps, Dsolver.num_steps);
+
+        %%%
+        % Cull the old constraints
+        GC          = PsiClock < ConstraintClock;
+        Margins     = Margins(GC);
+        PsiR        = PsiR(GC);
+        PsiClock    = PsiClock(GC);
+        H           = H(GC, GC);
+        Q           = Q(GC);
+
+        Diagnostics.num_constraints = cat(1, Diagnostics.num_constraints, length(PsiR));
+    end
+
+
+    % Finish diagnostics
+
+    Diagnostics.time_total = toc(TIME_START);
+    Diagnostics.feasible_count = FEASIBLE_COUNT;
+end
+
+function H = expandKernel(H)
+
+    global STRUCTKERNEL;
+    global PsiR;
+
+    m = length(H);
+    H = padarray(H, [1 1], 0, 'post');
+
+
+    for i = 1:m+1
+        H(i,m+1)    = STRUCTKERNEL( PsiR{i}, PsiR{m+1} );
+        H(m+1, i)   = H(i, m+1);
+    end
+end
+
+function Q = expandRegularizer(Q, K, W)
+
+    % FIXME:  2012-01-31 21:34:15 by Brian McFee <bmcfee@cs.ucsd.edu>
+    %  does not support unregularized learning
+
+    global PsiR;
+    global STRUCTKERNEL REG;
+
+    m           = length(Q);
+    Q(m+1,1)    = STRUCTKERNEL(REG(W,K,1), PsiR{m+1});
+
+end
+
+function ClassScores = synthesizeRelevance(Y)
+
+    classes     = unique(Y);
+    nClasses    = length(classes);
+
+    ClassScores = struct(   'Y',    Y, ...
+                            'classes', classes, ...
+                            'Ypos', [], ...
+                            'Yneg', []);
+
+    Ypos = cell(nClasses, 1);
+    Yneg = cell(nClasses, 1);
+    for c = 1:nClasses
+        Ypos{c} = (Y == classes(c));
+        Yneg{c} = ~Ypos{c};
+    end
+
+    ClassScores.Ypos = Ypos;
+    ClassScores.Yneg = Yneg;
+
+end