Mercurial > hg > camir-aes2014
diff toolboxes/SVM-light/src/svm_hideo.c @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/SVM-light/src/svm_hideo.c Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,1062 @@ +/***********************************************************************/ +/* */ +/* svm_hideo.c */ +/* */ +/* The Hildreth and D'Espo solver specialized for SVMs. */ +/* */ +/* Author: Thorsten Joachims */ +/* Date: 02.07.02 */ +/* */ +/* Copyright (c) 2002 Thorsten Joachims - All rights reserved */ +/* */ +/* This software is available for non-commercial use only. It must */ +/* not be modified and distributed without prior permission of the */ +/* author. The author is not responsible for implications from the */ +/* use of this software. */ +/* */ +/***********************************************************************/ + +# include <math.h> +# include "svm_common.h" + +/* + solve the quadratic programming problem + + minimize g0 * x + 1/2 x' * G * x + subject to ce*x = ce0 + l <= x <= u + + The linear constraint vector ce can only have -1/+1 as entries +*/ + +/* Common Block Declarations */ + +long verbosity; + +# define PRIMAL_OPTIMAL 1 +# define DUAL_OPTIMAL 2 +# define MAXITER_EXCEEDED 3 +# define NAN_SOLUTION 4 +# define ONLY_ONE_VARIABLE 5 + +# define LARGEROUND 0 +# define SMALLROUND 1 + +/* /////////////////////////////////////////////////////////////// */ + +# define DEF_PRECISION 1E-5 +# define DEF_MAX_ITERATIONS 200 +# define DEF_LINDEP_SENSITIVITY 1E-8 +# define EPSILON_HIDEO 1E-20 +# define EPSILON_EQ 1E-5 + +double *optimize_qp(QP *, double *, long, double *, LEARN_PARM *); +double *primal=0,*dual=0; +long precision_violations=0; +double opt_precision=DEF_PRECISION; +long maxiter=DEF_MAX_ITERATIONS; +double lindep_sensitivity=DEF_LINDEP_SENSITIVITY; +double *buffer; +long *nonoptimal; + +long smallroundcount=0; +long roundnumber=0; + +/* /////////////////////////////////////////////////////////////// */ + +void *my_malloc(); + +int optimize_hildreth_despo(long,long,double,double,double,long,long,long,double,double *, + double *,double *,double *,double *,double *, + double *,double *,double *,long *,double *,double *); +int solve_dual(long,long,double,double,long,double *,double *,double *, + double *,double *,double *,double *,double *,double *, + double *,double *,double *,double *,long); + +void linvert_matrix(double *, long, double *, double, long *); +void lprint_matrix(double *, long); +void ladd_matrix(double *, long, double); +void lcopy_matrix(double *, long, double *); +void lswitch_rows_matrix(double *, long, long, long); +void lswitchrk_matrix(double *, long, long, long); + +double calculate_qp_objective(long, double *, double *, double *); + + + +double *optimize_qp(qp,epsilon_crit,nx,threshold,learn_parm) +QP *qp; +double *epsilon_crit; +long nx; /* Maximum number of variables in QP */ +double *threshold; +LEARN_PARM *learn_parm; +/* start the optimizer and return the optimal values */ +/* The HIDEO optimizer does not necessarily fully solve the problem. */ +/* Since it requires a strictly positive definite hessian, the solution */ +/* is restricted to a linear independent subset in case the matrix is */ +/* only semi-definite. */ +{ + long i,j; + int result; + double eq,progress; + + roundnumber++; + + if(!primal) { /* allocate memory at first call */ + primal=(double *)my_malloc(sizeof(double)*nx); + dual=(double *)my_malloc(sizeof(double)*((nx+1)*2)); + nonoptimal=(long *)my_malloc(sizeof(long)*(nx)); + buffer=(double *)my_malloc(sizeof(double)*((nx+1)*2*(nx+1)*2+ + nx*nx+2*(nx+1)*2+2*nx+1+2*nx+ + nx+nx+nx*nx)); + (*threshold)=0; + for(i=0;i<nx;i++) { + primal[i]=0; + } + } + + if(verbosity>=4) { /* really verbose */ + printf("\n\n"); + eq=qp->opt_ce0[0]; + for(i=0;i<qp->opt_n;i++) { + eq+=qp->opt_xinit[i]*qp->opt_ce[i]; + printf("%f: ",qp->opt_g0[i]); + for(j=0;j<qp->opt_n;j++) { + printf("%f ",qp->opt_g[i*qp->opt_n+j]); + } + printf(": a=%.10f < %f",qp->opt_xinit[i],qp->opt_up[i]); + printf(": y=%f\n",qp->opt_ce[i]); + } + if(qp->opt_m) { + printf("EQ: %f*x0",qp->opt_ce[0]); + for(i=1;i<qp->opt_n;i++) { + printf(" + %f*x%ld",qp->opt_ce[i],i); + } + printf(" = %f\n\n",-qp->opt_ce0[0]); + } + } + + result=optimize_hildreth_despo(qp->opt_n,qp->opt_m, + opt_precision,(*epsilon_crit), + learn_parm->epsilon_a,maxiter, + /* (long)PRIMAL_OPTIMAL, */ + (long)0, (long)0, + lindep_sensitivity, + qp->opt_g,qp->opt_g0,qp->opt_ce,qp->opt_ce0, + qp->opt_low,qp->opt_up,primal,qp->opt_xinit, + dual,nonoptimal,buffer,&progress); + if(verbosity>=3) { + printf("return(%d)...",result); + } + + if(learn_parm->totwords < learn_parm->svm_maxqpsize) { + /* larger working sets will be linear dependent anyway */ + learn_parm->svm_maxqpsize=maxl(learn_parm->totwords,(long)2); + } + + if(result == NAN_SOLUTION) { + lindep_sensitivity*=2; /* throw out linear dependent examples more */ + /* generously */ + if(learn_parm->svm_maxqpsize>2) { + learn_parm->svm_maxqpsize--; /* decrease size of qp-subproblems */ + } + precision_violations++; + } + + /* take one round of only two variable to get unstuck */ + if((result != PRIMAL_OPTIMAL) || (!(roundnumber % 31)) || (progress <= 0)) { + + smallroundcount++; + + result=optimize_hildreth_despo(qp->opt_n,qp->opt_m, + opt_precision,(*epsilon_crit), + learn_parm->epsilon_a,(long)maxiter, + (long)PRIMAL_OPTIMAL,(long)SMALLROUND, + lindep_sensitivity, + qp->opt_g,qp->opt_g0,qp->opt_ce,qp->opt_ce0, + qp->opt_low,qp->opt_up,primal,qp->opt_xinit, + dual,nonoptimal,buffer,&progress); + if(verbosity>=3) { + printf("return_srd(%d)...",result); + } + + if(result != PRIMAL_OPTIMAL) { + if(result != ONLY_ONE_VARIABLE) + precision_violations++; + if(result == MAXITER_EXCEEDED) + maxiter+=100; + if(result == NAN_SOLUTION) { + lindep_sensitivity*=2; /* throw out linear dependent examples more */ + /* generously */ + /* results not valid, so return inital values */ + for(i=0;i<qp->opt_n;i++) { + primal[i]=qp->opt_xinit[i]; + } + } + } + } + + + if(precision_violations > 50) { + precision_violations=0; + (*epsilon_crit)*=10.0; + if(verbosity>=1) { + printf("\nWARNING: Relaxing epsilon on KT-Conditions (%f).\n", + (*epsilon_crit)); + } + } + + if((qp->opt_m>0) && (result != NAN_SOLUTION) && (!isnan(dual[1]-dual[0]))) + (*threshold)=dual[1]-dual[0]; + else + (*threshold)=0; + + if(verbosity>=4) { /* really verbose */ + printf("\n\n"); + eq=qp->opt_ce0[0]; + for(i=0;i<qp->opt_n;i++) { + eq+=primal[i]*qp->opt_ce[i]; + printf("%f: ",qp->opt_g0[i]); + for(j=0;j<qp->opt_n;j++) { + printf("%f ",qp->opt_g[i*qp->opt_n+j]); + } + printf(": a=%.30f",primal[i]); + printf(": nonopti=%ld",nonoptimal[i]); + printf(": y=%f\n",qp->opt_ce[i]); + } + printf("eq-constraint=%.30f\n",eq); + printf("b=%f\n",(*threshold)); + printf(" smallroundcount=%ld ",smallroundcount); + } + + return(primal); +} + + + +int optimize_hildreth_despo(n,m,precision,epsilon_crit,epsilon_a,maxiter,goal, + smallround,lindep_sensitivity,g,g0,ce,ce0,low,up, + primal,init,dual,lin_dependent,buffer,progress) + long n; /* number of variables */ + long m; /* number of linear equality constraints [0,1] */ + double precision; /* solve at least to this dual precision */ + double epsilon_crit; /* stop, if KT-Conditions approx fulfilled */ + double epsilon_a; /* precision of alphas at bounds */ + long maxiter; /* stop after this many iterations */ + long goal; /* keep going until goal fulfilled */ + long smallround; /* use only two variables of steepest descent */ + double lindep_sensitivity; /* epsilon for detecting linear dependent ex */ + double *g; /* hessian of objective */ + double *g0; /* linear part of objective */ + double *ce,*ce0; /* linear equality constraints */ + double *low,*up; /* box constraints */ + double *primal; /* primal variables */ + double *init; /* initial values of primal */ + double *dual; /* dual variables */ + long *lin_dependent; + double *buffer; + double *progress; /* delta in the objective function between + before and after */ +{ + long i,j,k,from,to,n_indep,changed; + double sum,bmin=0,bmax=0; + double *d,*d0,*ig,*dual_old,*temp,*start; + double *g0_new,*g_new,*ce_new,*ce0_new,*low_new,*up_new; + double add,t; + int result; + double obj_before,obj_after; + long b1,b2; + double g0_b1,g0_b2,ce0_b; + + g0_new=&(buffer[0]); /* claim regions of buffer */ + d=&(buffer[n]); + d0=&(buffer[n+(n+m)*2*(n+m)*2]); + ce_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2]); + ce0_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n]); + ig=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m]); + dual_old=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n]); + low_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2]); + up_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n]); + start=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n]); + g_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n+n]); + temp=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n+n+n*n]); + + b1=-1; + b2=-1; + for(i=0;i<n;i++) { /* get variables with steepest feasible descent */ + sum=g0[i]; + for(j=0;j<n;j++) + sum+=init[j]*g[i*n+j]; + sum=sum*ce[i]; + if(((b1==-1) || (sum<bmin)) + && (!((init[i]<=(low[i]+epsilon_a)) && (ce[i]<0.0))) + && (!((init[i]>=( up[i]-epsilon_a)) && (ce[i]>0.0))) + ) { + bmin=sum; + b1=i; + } + if(((b2==-1) || (sum>=bmax)) + && (!((init[i]<=(low[i]+epsilon_a)) && (ce[i]>0.0))) + && (!((init[i]>=( up[i]-epsilon_a)) && (ce[i]<0.0))) + ) { + bmax=sum; + b2=i; + } + } + /* in case of unbiased hyperplane, the previous projection on */ + /* equality constraint can lead to b1 or b2 being -1. */ + if((b1 == -1) || (b2 == -1)) { + b1=maxl(b1,b2); + b2=maxl(b1,b2); + } + + for(i=0;i<n;i++) { + start[i]=init[i]; + } + + /* in case both example vectors are linearly dependent */ + /* WARNING: Assumes that ce[] in {-1,1} */ + add=0; + changed=0; + if((b1 != b2) && (m==1)) { + for(i=0;i<n;i++) { /* fix other vectors */ + if(i==b1) + g0_b1=g0[i]; + if(i==b2) + g0_b2=g0[i]; + } + ce0_b=ce0[0]; + for(i=0;i<n;i++) { + if((i!=b1) && (i!=b2)) { + for(j=0;j<n;j++) { + if(j==b1) + g0_b1+=start[i]*g[i*n+j]; + if(j==b2) + g0_b2+=start[i]*g[i*n+j]; + } + ce0_b-=(start[i]*ce[i]); + } + } + if((g[b1*n+b2] == g[b1*n+b1]) && (g[b1*n+b2] == g[b2*n+b2])) { + /* printf("euqal\n"); */ + if(ce[b1] == ce[b2]) { + if(g0_b1 <= g0_b2) { /* set b1 to upper bound */ + /* printf("case +=<\n"); */ + changed=1; + t=up[b1]-init[b1]; + if((init[b2]-low[b2]) < t) { + t=init[b2]-low[b2]; + } + start[b1]=init[b1]+t; + start[b2]=init[b2]-t; + } + else if(g0_b1 > g0_b2) { /* set b2 to upper bound */ + /* printf("case +=>\n"); */ + changed=1; + t=up[b2]-init[b2]; + if((init[b1]-low[b1]) < t) { + t=init[b1]-low[b1]; + } + start[b1]=init[b1]-t; + start[b2]=init[b2]+t; + } + } + else if(((g[b1*n+b1]>0) || (g[b2*n+b2]>0))) { /* (ce[b1] != ce[b2]) */ + /* printf("case +!\n"); */ + t=((ce[b2]/ce[b1])*g0[b1]-g0[b2]+ce0[0]*(g[b1*n+b1]*ce[b2]/ce[b1]-g[b1*n+b2]/ce[b1]))/((ce[b2]*ce[b2]/(ce[b1]*ce[b1]))*g[b1*n+b1]+g[b2*n+b2]-2*(g[b1*n+b2]*ce[b2]/ce[b1]))-init[b2]; + changed=1; + if((up[b2]-init[b2]) < t) { + t=up[b2]-init[b2]; + } + if((init[b2]-low[b2]) < -t) { + t=-(init[b2]-low[b2]); + } + if((up[b1]-init[b1]) < t) { + t=(up[b1]-init[b1]); + } + if((init[b1]-low[b1]) < -t) { + t=-(init[b1]-low[b1]); + } + start[b1]=init[b1]+t; + start[b2]=init[b2]+t; + } + } + if((-g[b1*n+b2] == g[b1*n+b1]) && (-g[b1*n+b2] == g[b2*n+b2])) { + /* printf("diffeuqal\n"); */ + if(ce[b1] != ce[b2]) { + if((g0_b1+g0_b2) < 0) { /* set b1 and b2 to upper bound */ + /* printf("case -!<\n"); */ + changed=1; + t=up[b1]-init[b1]; + if((up[b2]-init[b2]) < t) { + t=up[b2]-init[b2]; + } + start[b1]=init[b1]+t; + start[b2]=init[b2]+t; + } + else if((g0_b1+g0_b2) >= 0) { /* set b1 and b2 to lower bound */ + /* printf("case -!>\n"); */ + changed=1; + t=init[b1]-low[b1]; + if((init[b2]-low[b2]) < t) { + t=init[b2]-low[b2]; + } + start[b1]=init[b1]-t; + start[b2]=init[b2]-t; + } + } + else if(((g[b1*n+b1]>0) || (g[b2*n+b2]>0))) { /* (ce[b1]==ce[b2]) */ + /* printf("case -=\n"); */ + t=((ce[b2]/ce[b1])*g0[b1]-g0[b2]+ce0[0]*(g[b1*n+b1]*ce[b2]/ce[b1]-g[b1*n+b2]/ce[b1]))/((ce[b2]*ce[b2]/(ce[b1]*ce[b1]))*g[b1*n+b1]+g[b2*n+b2]-2*(g[b1*n+b2]*ce[b2]/ce[b1]))-init[b2]; + changed=1; + if((up[b2]-init[b2]) < t) { + t=up[b2]-init[b2]; + } + if((init[b2]-low[b2]) < -t) { + t=-(init[b2]-low[b2]); + } + if((up[b1]-init[b1]) < -t) { + t=-(up[b1]-init[b1]); + } + if((init[b1]-low[b1]) < t) { + t=init[b1]-low[b1]; + } + start[b1]=init[b1]-t; + start[b2]=init[b2]+t; + } + } + } + /* if we have a biased hyperplane, then adding a constant to the */ + /* hessian does not change the solution. So that is done for examples */ + /* with zero diagonal entry, since HIDEO cannot handle them. */ + if((m>0) + && ((fabs(g[b1*n+b1]) < lindep_sensitivity) + || (fabs(g[b2*n+b2]) < lindep_sensitivity))) { + /* printf("Case 0\n"); */ + add+=0.093274; + } + /* in case both examples are linear dependent */ + else if((m>0) + && (g[b1*n+b2] != 0 && g[b2*n+b2] != 0) + && (fabs(g[b1*n+b1]/g[b1*n+b2] - g[b1*n+b2]/g[b2*n+b2]) + < lindep_sensitivity)) { + /* printf("Case lindep\n"); */ + add+=0.078274; + } + + /* special case for zero diagonal entry on unbiased hyperplane */ + if((m==0) && (b1>=0)) { + if(fabs(g[b1*n+b1]) < lindep_sensitivity) { + /* printf("Case 0b1\n"); */ + for(i=0;i<n;i++) { /* fix other vectors */ + if(i==b1) + g0_b1=g0[i]; + } + for(i=0;i<n;i++) { + if(i!=b1) { + for(j=0;j<n;j++) { + if(j==b1) + g0_b1+=start[i]*g[i*n+j]; + } + } + } + if(g0_b1<0) + start[b1]=up[b1]; + if(g0_b1>=0) + start[b1]=low[b1]; + } + } + if((m==0) && (b2>=0)) { + if(fabs(g[b2*n+b2]) < lindep_sensitivity) { + /* printf("Case 0b2\n"); */ + for(i=0;i<n;i++) { /* fix other vectors */ + if(i==b2) + g0_b2=g0[i]; + } + for(i=0;i<n;i++) { + if(i!=b2) { + for(j=0;j<n;j++) { + if(j==b2) + g0_b2+=start[i]*g[i*n+j]; + } + } + } + if(g0_b2<0) + start[b2]=up[b2]; + if(g0_b2>=0) + start[b2]=low[b2]; + } + } + + /* printf("b1=%ld,b2=%ld\n",b1,b2); */ + + lcopy_matrix(g,n,d); + if((m==1) && (add>0.0)) { + for(j=0;j<n;j++) { + for(k=0;k<n;k++) { + d[j*n+k]+=add*ce[j]*ce[k]; + } + } + } + else { + add=0.0; + } + + if(n>2) { /* switch, so that variables are better mixed */ + lswitchrk_matrix(d,n,b1,(long)0); + if(b2 == 0) + lswitchrk_matrix(d,n,b1,(long)1); + else + lswitchrk_matrix(d,n,b2,(long)1); + } + if(smallround == SMALLROUND) { + for(i=2;i<n;i++) { + lin_dependent[i]=1; + } + if(m>0) { /* for biased hyperplane, pick two variables */ + lin_dependent[0]=0; + lin_dependent[1]=0; + } + else { /* for unbiased hyperplane, pick only one variable */ + lin_dependent[0]=smallroundcount % 2; + lin_dependent[1]=(smallroundcount+1) % 2; + } + } + else { + for(i=0;i<n;i++) { + lin_dependent[i]=0; + } + } + linvert_matrix(d,n,ig,lindep_sensitivity,lin_dependent); + if(n>2) { /* now switch back */ + if(b2 == 0) { + lswitchrk_matrix(ig,n,b1,(long)1); + i=lin_dependent[1]; + lin_dependent[1]=lin_dependent[b1]; + lin_dependent[b1]=i; + } + else { + lswitchrk_matrix(ig,n,b2,(long)1); + i=lin_dependent[1]; + lin_dependent[1]=lin_dependent[b2]; + lin_dependent[b2]=i; + } + lswitchrk_matrix(ig,n,b1,(long)0); + i=lin_dependent[0]; + lin_dependent[0]=lin_dependent[b1]; + lin_dependent[b1]=i; + } + /* lprint_matrix(d,n); */ + /* lprint_matrix(ig,n); */ + + lcopy_matrix(g,n,g_new); /* restore g_new matrix */ + if(add>0) + for(j=0;j<n;j++) { + for(k=0;k<n;k++) { + g_new[j*n+k]+=add*ce[j]*ce[k]; + } + } + + for(i=0;i<n;i++) { /* fix linear dependent vectors */ + g0_new[i]=g0[i]+add*ce0[0]*ce[i]; + } + if(m>0) ce0_new[0]=-ce0[0]; + for(i=0;i<n;i++) { /* fix linear dependent vectors */ + if(lin_dependent[i]) { + for(j=0;j<n;j++) { + if(!lin_dependent[j]) { + g0_new[j]+=start[i]*g_new[i*n+j]; + } + } + if(m>0) ce0_new[0]-=(start[i]*ce[i]); + } + } + from=0; /* remove linear dependent vectors */ + to=0; + n_indep=0; + for(i=0;i<n;i++) { + if(!lin_dependent[i]) { + g0_new[n_indep]=g0_new[i]; + ce_new[n_indep]=ce[i]; + low_new[n_indep]=low[i]; + up_new[n_indep]=up[i]; + primal[n_indep]=start[i]; + n_indep++; + } + for(j=0;j<n;j++) { + if((!lin_dependent[i]) && (!lin_dependent[j])) { + ig[to]=ig[from]; + g_new[to]=g_new[from]; + to++; + } + from++; + } + } + + if(verbosity>=3) { + printf("real_qp_size(%ld)...",n_indep); + } + + /* cannot optimize with only one variable */ + if((n_indep<=1) && (m>0) && (!changed)) { + for(i=n-1;i>=0;i--) { + primal[i]=init[i]; + } + return((int)ONLY_ONE_VARIABLE); + } + + if((!changed) || (n_indep>1)) { + result=solve_dual(n_indep,m,precision,epsilon_crit,maxiter,g_new,g0_new, + ce_new,ce0_new,low_new,up_new,primal,d,d0,ig, + dual,dual_old,temp,goal); + } + else { + result=PRIMAL_OPTIMAL; + } + + j=n_indep; + for(i=n-1;i>=0;i--) { + if(!lin_dependent[i]) { + j--; + primal[i]=primal[j]; + } + else { + primal[i]=start[i]; /* leave as is */ + } + temp[i]=primal[i]; + } + + obj_before=calculate_qp_objective(n,g,g0,init); + obj_after=calculate_qp_objective(n,g,g0,primal); + (*progress)=obj_before-obj_after; + if(verbosity>=3) { + printf("before(%.30f)...after(%.30f)...result_sd(%d)...", + obj_before,obj_after,result); + } + + return((int)result); +} + + +int solve_dual(n,m,precision,epsilon_crit,maxiter,g,g0,ce,ce0,low,up,primal, + d,d0,ig,dual,dual_old,temp,goal) + /* Solves the dual using the method of Hildreth and D'Espo. */ + /* Can only handle problems with zero or exactly one */ + /* equality constraints. */ + + long n; /* number of variables */ + long m; /* number of linear equality constraints */ + double precision; /* solve at least to this dual precision */ + double epsilon_crit; /* stop, if KT-Conditions approx fulfilled */ + long maxiter; /* stop after that many iterations */ + double *g; + double *g0; /* linear part of objective */ + double *ce,*ce0; /* linear equality constraints */ + double *low,*up; /* box constraints */ + double *primal; /* variables (with initial values) */ + double *d,*d0,*ig,*dual,*dual_old,*temp; /* buffer */ + long goal; +{ + long i,j,k,iter; + double sum,w,maxviol,viol,temp1,temp2,isnantest; + double model_b,dist; + long retrain,maxfaktor,primal_optimal=0,at_bound,scalemaxiter; + double epsilon_a=1E-15,epsilon_hideo; + double eq; + + if((m<0) || (m>1)) + perror("SOLVE DUAL: inappropriate number of eq-constrains!"); + + /* + printf("\n"); + for(i=0;i<n;i++) { + printf("%f: ",g0[i]); + for(j=0;j<n;j++) { + printf("%f ",g[i*n+j]); + } + printf(": a=%.30f",primal[i]); + printf(": y=%f\n",ce[i]); + } + */ + + for(i=0;i<2*(n+m);i++) { + dual[i]=0; + dual_old[i]=0; + } + for(i=0;i<n;i++) { + for(j=0;j<n;j++) { /* dual hessian for box constraints */ + d[i*2*(n+m)+j]=ig[i*n+j]; + d[(i+n)*2*(n+m)+j]=-ig[i*n+j]; + d[i*2*(n+m)+j+n]=-ig[i*n+j]; + d[(i+n)*2*(n+m)+j+n]=ig[i*n+j]; + } + if(m>0) { + sum=0; /* dual hessian for eq constraints */ + for(j=0;j<n;j++) { + sum+=(ce[j]*ig[i*n+j]); + } + d[i*2*(n+m)+2*n]=sum; + d[i*2*(n+m)+2*n+1]=-sum; + d[(n+i)*2*(n+m)+2*n]=-sum; + d[(n+i)*2*(n+m)+2*n+1]=sum; + d[(n+n)*2*(n+m)+i]=sum; + d[(n+n+1)*2*(n+m)+i]=-sum; + d[(n+n)*2*(n+m)+(n+i)]=-sum; + d[(n+n+1)*2*(n+m)+(n+i)]=sum; + + sum=0; + for(j=0;j<n;j++) { + for(k=0;k<n;k++) { + sum+=(ce[k]*ce[j]*ig[j*n+k]); + } + } + d[(n+n)*2*(n+m)+2*n]=sum; + d[(n+n)*2*(n+m)+2*n+1]=-sum; + d[(n+n+1)*2*(n+m)+2*n]=-sum; + d[(n+n+1)*2*(n+m)+2*n+1]=sum; + } + } + + for(i=0;i<n;i++) { /* dual linear component for the box constraints */ + w=0; + for(j=0;j<n;j++) { + w+=(ig[i*n+j]*g0[j]); + } + d0[i]=up[i]+w; + d0[i+n]=-low[i]-w; + } + + if(m>0) { + sum=0; /* dual linear component for eq constraints */ + for(j=0;j<n;j++) { + for(k=0;k<n;k++) { + sum+=(ce[k]*ig[k*n+j]*g0[j]); + } + } + d0[2*n]=ce0[0]+sum; + d0[2*n+1]=-ce0[0]-sum; + } + + maxviol=999999; + iter=0; + retrain=1; + maxfaktor=1; + scalemaxiter=maxiter/5; + while((retrain) && (maxviol > 0) && (iter < (scalemaxiter*maxfaktor))) { + iter++; + + while((maxviol > precision) && (iter < (scalemaxiter*maxfaktor))) { + iter++; + maxviol=0; + for(i=0;i<2*(n+m);i++) { + sum=d0[i]; + for(j=0;j<2*(n+m);j++) { + sum+=d[i*2*(n+m)+j]*dual_old[j]; + } + sum-=d[i*2*(n+m)+i]*dual_old[i]; + dual[i]=-sum/d[i*2*(n+m)+i]; + if(dual[i]<0) dual[i]=0; + + viol=fabs(dual[i]-dual_old[i]); + if(viol>maxviol) + maxviol=viol; + dual_old[i]=dual[i]; + } + /* + printf("%d) maxviol=%20f precision=%f\n",iter,maxviol,precision); + */ + } + + if(m>0) { + for(i=0;i<n;i++) { + temp[i]=dual[i]-dual[i+n]+ce[i]*(dual[n+n]-dual[n+n+1])+g0[i]; + } + } + else { + for(i=0;i<n;i++) { + temp[i]=dual[i]-dual[i+n]+g0[i]; + } + } + for(i=0;i<n;i++) { + primal[i]=0; /* calc value of primal variables */ + for(j=0;j<n;j++) { + primal[i]+=ig[i*n+j]*temp[j]; + } + primal[i]*=-1.0; + if(primal[i]<=(low[i])) { /* clip conservatively */ + primal[i]=low[i]; + } + else if(primal[i]>=(up[i])) { + primal[i]=up[i]; + } + } + + if(m>0) + model_b=dual[n+n+1]-dual[n+n]; + else + model_b=0; + + epsilon_hideo=EPSILON_HIDEO; + for(i=0;i<n;i++) { /* check precision of alphas */ + dist=-model_b*ce[i]; + dist+=(g0[i]+1.0); + for(j=0;j<i;j++) { + dist+=(primal[j]*g[j*n+i]); + } + for(j=i;j<n;j++) { + dist+=(primal[j]*g[i*n+j]); + } + if((primal[i]<(up[i]-epsilon_hideo)) && (dist < (1.0-epsilon_crit))) { + epsilon_hideo=(up[i]-primal[i])*2.0; + } + else if((primal[i]>(low[i]+epsilon_hideo)) &&(dist>(1.0+epsilon_crit))) { + epsilon_hideo=(primal[i]-low[i])*2.0; + } + } + /* printf("\nEPSILON_HIDEO=%.30f\n",epsilon_hideo); */ + + for(i=0;i<n;i++) { /* clip alphas to bounds */ + if(primal[i]<=(low[i]+epsilon_hideo)) { + primal[i]=low[i]; + } + else if(primal[i]>=(up[i]-epsilon_hideo)) { + primal[i]=up[i]; + } + } + + retrain=0; + primal_optimal=1; + at_bound=0; + for(i=0;(i<n);i++) { /* check primal KT-Conditions */ + dist=-model_b*ce[i]; + dist+=(g0[i]+1.0); + for(j=0;j<i;j++) { + dist+=(primal[j]*g[j*n+i]); + } + for(j=i;j<n;j++) { + dist+=(primal[j]*g[i*n+j]); + } + if((primal[i]<(up[i]-epsilon_a)) && (dist < (1.0-epsilon_crit))) { + retrain=1; + primal_optimal=0; + } + else if((primal[i]>(low[i]+epsilon_a)) && (dist > (1.0+epsilon_crit))) { + retrain=1; + primal_optimal=0; + } + if((primal[i]<=(low[i]+epsilon_a)) || (primal[i]>=(up[i]-epsilon_a))) { + at_bound++; + } + /* printf("HIDEOtemp: a[%ld]=%.30f, dist=%.6f, b=%f, at_bound=%ld\n",i,primal[i],dist,model_b,at_bound); */ + } + if(m>0) { + eq=-ce0[0]; /* check precision of eq-constraint */ + for(i=0;i<n;i++) { + eq+=(ce[i]*primal[i]); + } + if((EPSILON_EQ < fabs(eq)) + /* + && !((goal==PRIMAL_OPTIMAL) + && (at_bound==n)) */ + ) { + retrain=1; + primal_optimal=0; + } + /* printf("\n eq=%.30f ce0=%f at-bound=%ld\n",eq,ce0[0],at_bound); */ + } + + if(retrain) { + precision/=10; + if(((goal == PRIMAL_OPTIMAL) && (maxfaktor < 50000)) + || (maxfaktor < 5)) { + maxfaktor++; + } + } + } + + if(!primal_optimal) { + for(i=0;i<n;i++) { + primal[i]=0; /* calc value of primal variables */ + for(j=0;j<n;j++) { + primal[i]+=ig[i*n+j]*temp[j]; + } + primal[i]*=-1.0; + if(primal[i]<=(low[i]+epsilon_a)) { /* clip conservatively */ + primal[i]=low[i]; + } + else if(primal[i]>=(up[i]-epsilon_a)) { + primal[i]=up[i]; + } + } + } + + isnantest=0; + for(i=0;i<n;i++) { /* check for isnan */ + isnantest+=primal[i]; + } + + if(m>0) { + temp1=dual[n+n+1]; /* copy the dual variables for the eq */ + temp2=dual[n+n]; /* constraints to a handier location */ + for(i=n+n+1;i>=2;i--) { + dual[i]=dual[i-2]; + } + dual[0]=temp2; + dual[1]=temp1; + isnantest+=temp1+temp2; + } + + if(isnan(isnantest)) { + return((int)NAN_SOLUTION); + } + else if(primal_optimal) { + return((int)PRIMAL_OPTIMAL); + } + else if(maxviol == 0.0) { + return((int)DUAL_OPTIMAL); + } + else { + return((int)MAXITER_EXCEEDED); + } +} + + +void linvert_matrix(matrix,depth,inverse,lindep_sensitivity,lin_dependent) +double *matrix; +long depth; +double *inverse,lindep_sensitivity; +long *lin_dependent; /* indicates the active parts of matrix on + input and output*/ +{ + long i,j,k; + double factor; + + for(i=0;i<depth;i++) { + /* lin_dependent[i]=0; */ + for(j=0;j<depth;j++) { + inverse[i*depth+j]=0.0; + } + inverse[i*depth+i]=1.0; + } + for(i=0;i<depth;i++) { + if(lin_dependent[i] || (fabs(matrix[i*depth+i])<lindep_sensitivity)) { + lin_dependent[i]=1; + } + else { + for(j=i+1;j<depth;j++) { + factor=matrix[j*depth+i]/matrix[i*depth+i]; + for(k=i;k<depth;k++) { + matrix[j*depth+k]-=(factor*matrix[i*depth+k]); + } + for(k=0;k<depth;k++) { + inverse[j*depth+k]-=(factor*inverse[i*depth+k]); + } + } + } + } + for(i=depth-1;i>=0;i--) { + if(!lin_dependent[i]) { + factor=1/matrix[i*depth+i]; + for(k=0;k<depth;k++) { + inverse[i*depth+k]*=factor; + } + matrix[i*depth+i]=1; + for(j=i-1;j>=0;j--) { + factor=matrix[j*depth+i]; + matrix[j*depth+i]=0; + for(k=0;k<depth;k++) { + inverse[j*depth+k]-=(factor*inverse[i*depth+k]); + } + } + } + } +} + +void lprint_matrix(matrix,depth) +double *matrix; +long depth; +{ + long i,j; + for(i=0;i<depth;i++) { + for(j=0;j<depth;j++) { + printf("%5.2f ",(double)(matrix[i*depth+j])); + } + printf("\n"); + } + printf("\n"); +} + +void ladd_matrix(matrix,depth,scalar) +double *matrix; +long depth; +double scalar; +{ + long i,j; + for(i=0;i<depth;i++) { + for(j=0;j<depth;j++) { + matrix[i*depth+j]+=scalar; + } + } +} + +void lcopy_matrix(matrix,depth,matrix2) +double *matrix; +long depth; +double *matrix2; +{ + long i; + + for(i=0;i<(depth)*(depth);i++) { + matrix2[i]=matrix[i]; + } +} + +void lswitch_rows_matrix(matrix,depth,r1,r2) +double *matrix; +long depth,r1,r2; +{ + long i; + double temp; + + for(i=0;i<depth;i++) { + temp=matrix[r1*depth+i]; + matrix[r1*depth+i]=matrix[r2*depth+i]; + matrix[r2*depth+i]=temp; + } +} + +void lswitchrk_matrix(matrix,depth,rk1,rk2) +double *matrix; +long depth,rk1,rk2; +{ + long i; + double temp; + + for(i=0;i<depth;i++) { + temp=matrix[rk1*depth+i]; + matrix[rk1*depth+i]=matrix[rk2*depth+i]; + matrix[rk2*depth+i]=temp; + } + for(i=0;i<depth;i++) { + temp=matrix[i*depth+rk1]; + matrix[i*depth+rk1]=matrix[i*depth+rk2]; + matrix[i*depth+rk2]=temp; + } +} + +double calculate_qp_objective(opt_n,opt_g,opt_g0,alpha) +long opt_n; +double *opt_g,*opt_g0,*alpha; +{ + double obj; + long i,j; + obj=0; /* calculate objective */ + for(i=0;i<opt_n;i++) { + obj+=(opt_g0[i]*alpha[i]); + obj+=(0.5*alpha[i]*alpha[i]*opt_g[i*opt_n+i]); + for(j=0;j<i;j++) { + obj+=(alpha[j]*alpha[i]*opt_g[j*opt_n+i]); + } + } + return(obj); +}