Mercurial > hg > camir-aes2014
diff toolboxes/MIRtoolbox1.3.2/somtoolbox/lvq1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/MIRtoolbox1.3.2/somtoolbox/lvq1.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,180 @@ +function codebook=lvq1(codebook, data, rlen, alpha); + +%LVQ1 Trains a codebook with the LVQ1 -algorithm. +% +% sM = lvq1(sM, D, rlen, alpha) +% +% sM = lvq1(sM,sD,30*length(sM.codebook),0.08); +% +% Input and output arguments: +% sM (struct) map struct, the class information must be +% present on the first column of .labels field +% D (struct) data struct, the class information must +% be present on the first column of .labels field +% rlen (scalar) running length +% alpha (scalar) learning parameter +% +% sM (struct) map struct, the trained codebook +% +% NOTE: does not take mask into account. +% +% For more help, try 'type lvq1', or check out online documentation. +% See also LVQ3, SOM_SUPERVISED, SOM_SEQTRAIN. + +%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% lvq1 +% +% PURPOSE +% +% Trains codebook with the LVQ1 -algorithm (described below). +% +% SYNTAX +% +% sM = lvq1(sM, D, rlen, alpha) +% +% DESCRIPTION +% +% Trains codebook with the LVQ1 -algorithm. Codebook contains a number +% of vectors (mi, i=1,2,...,n) and so does data (vectors xj, +% j=1,2,...,k). Both vector sets are classified: vectors may have a +% class (classes are set to the first column of data or map -structs' +% .labels -field). For each xj there is defined the nearest codebook +% -vector index c by searching the minimum of the euclidean distances +% between the current xj and codebook -vectors: +% +% c = min{ ||xj - mi|| }, i=[1,..,n], for fixed xj +% i +% If xj and mc belong to the same class, mc is updated as follows: +% mc(t+1) = mc(t) + alpha * (xj(t) - mc(t)) +% If xj and mc belong to different classes, mc is updated as follows: +% mc(t+1) = mc(t) - alpha * (xj(t) - mc(t)) +% Otherwise updating is not performed. +% +% Argument 'rlen' tells how many times training sequence is performed. +% LVQ1 -algorithm may be stopped after a number of steps, that is +% 30-50 times the number of codebook vectors. +% +% Argument 'alpha' is the learning rate, recommended to be smaller +% than 0.1. +% +% NOTE: does not take mask into account. +% +% REFERENCES +% +% Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag, +% Berlin, 1995, pp. 176-179. +% +% See also LVQ_PAK from http://www.cis.hut.fi/research/som_lvq_pak.shtml +% +% REQUIRED INPUT ARGUMENTS +% +% sM The data to be trained. +% (struct) A map struct. +% +% D The data to use in training. +% (struct) A data struct. +% +% rlen (integer) Running length of LVQ1 -algorithm. +% +% alpha (float) Learning rate used in training. +% +% OUTPUT ARGUMENTS +% +% codebook Trained data. +% (struct) A map struct. +% +% EXAMPLE +% +% lab = unique(sD.labels(:,1)); % different classes +% mu = length(lab)*5; % 5 prototypes for each +% sM = som_randinit(sD,'msize',[mu 1]); % initial prototypes +% sM.labels = [lab;lab;lab;lab;lab]; % their classes +% sM = lvq1(sM,sD,50*mu,0.05); % use LVQ1 to adjust +% % the prototypes +% sM = lvq3(sM,sD,50*mu,0.05,0.2,0.3); % then use LVQ3 +% +% SEE ALSO +% +% lvq3 Use LVQ3 algorithm for training. +% som_supervised Train SOM using supervised training. +% som_seqtrain Train SOM with sequential algorithm. + +% Contributed to SOM Toolbox vs2, February 2nd, 2000 by Juha Parhankangas +% Copyright (c) Juha Parhankangas +% http://www.cis.hut.fi/projects/somtoolbox/ + +% Juha Parhankangas 310100 juuso 020200 + +cod = codebook.codebook; +c_class = class2num(codebook.labels(:,1)); + +dat = data.data; +d_class = class2num(data.labels(:,1)); + +x=size(dat,1); +y=size(cod,2); + +ONES=ones(size(cod,1),1); + +for t=1:rlen + + fprintf(1,'\rTraining round: %d',t); + tmp=NaN*ones(x,y); + + for j=1:x + no_NaN=find(~isnan(dat(j,:))); + di = sqrt(sum([cod(:,no_NaN) - ONES*dat(j,no_NaN)].^2,2)); + + [foo,ind] = min(di); + + if d_class(j) & d_class(j) == c_class(ind) % 0 is for unclassified vectors + tmp(ind,:) = cod(ind,:) + alpha * (dat(j,:) - cod(ind,:)); + elseif d_class(j) + tmp(ind,:) = cod(ind,:) - alpha*(dat(j,:) - cod(ind,:)); + end + end + + inds = find(~isnan(sum(tmp,2))); + cod(inds,:) = tmp(inds,:); +end + +codebook.codebook = cod; + +sTrain = som_set('som_train','algorithm','lvq1',... + 'data_name',data.name,... + 'neigh','',... + 'mask',ones(y,1),... + 'radius_ini',NaN,... + 'radius_fin',NaN,... + 'alpha_ini',alpha,... + 'alpha_type','constant',... + 'trainlen',rlen,... + 'time',datestr(now,0)); +codebook.trainhist(end+1) = sTrain; + +return; + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function nos = class2num(class) + +names = {}; +nos = zeros(length(class),1); + +for i=1:length(class) + if ~isempty(class{i}) & ~any(strcmp(class{i},names)) + names=cat(1,names,class(i)); + end +end + +tmp_nos = (1:length(names))'; + +for i=1:length(class) + if ~isempty(class{i}) + nos(i,1) = find(strcmp(class{i},names)); + end +end + + +