diff toolboxes/FullBNT-1.0.7/netlab3.3/scg.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/FullBNT-1.0.7/netlab3.3/scg.m	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,208 @@
+function [x, options, flog, pointlog, scalelog] = scg(f, x, options, gradf, varargin)
+%SCG	Scaled conjugate gradient optimization.
+%
+%	Description
+%	[X, OPTIONS] = SCG(F, X, OPTIONS, GRADF) uses a scaled conjugate
+%	gradients algorithm to find a local minimum of the function F(X)
+%	whose gradient is given by GRADF(X).  Here X is a row vector and F
+%	returns a scalar value. The point at which F has a local minimum is
+%	returned as X.  The function value at that point is returned in
+%	OPTIONS(8).
+%
+%	[X, OPTIONS, FLOG, POINTLOG, SCALELOG] = SCG(F, X, OPTIONS, GRADF)
+%	also returns (optionally) a log of the function values after each
+%	cycle in FLOG, a log of the points visited in POINTLOG, and a log of
+%	the scale values in the algorithm in SCALELOG.
+%
+%	SCG(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional arguments to
+%	be passed to F() and GRADF().     The optional parameters have the
+%	following interpretations.
+%
+%	OPTIONS(1) is set to 1 to display error values; also logs error
+%	values in the return argument ERRLOG, and the points visited in the
+%	return argument POINTSLOG.  If OPTIONS(1) is set to 0, then only
+%	warning messages are displayed.  If OPTIONS(1) is -1, then nothing is
+%	displayed.
+%
+%	OPTIONS(2) is a measure of the absolute precision required for the
+%	value of X at the solution.  If the absolute difference between the
+%	values of X between two successive steps is less than OPTIONS(2),
+%	then this condition is satisfied.
+%
+%	OPTIONS(3) is a measure of the precision required of the objective
+%	function at the solution.  If the absolute difference between the
+%	objective function values between two successive steps is less than
+%	OPTIONS(3), then this condition is satisfied. Both this and the
+%	previous condition must be satisfied for termination.
+%
+%	OPTIONS(9) is set to 1 to check the user defined gradient function.
+%
+%	OPTIONS(10) returns the total number of function evaluations
+%	(including those in any line searches).
+%
+%	OPTIONS(11) returns the total number of gradient evaluations.
+%
+%	OPTIONS(14) is the maximum number of iterations; default 100.
+%
+%	See also
+%	CONJGRAD, QUASINEW
+%
+
+%	Copyright (c) Ian T Nabney (1996-2001)
+
+%  Set up the options.
+if length(options) < 18
+  error('Options vector too short')
+end
+
+if(options(14))
+  niters = options(14);
+else
+  niters = 100;
+end
+
+display = options(1);
+gradcheck = options(9);
+
+% Set up strings for evaluating function and gradient
+f = fcnchk(f, length(varargin));
+gradf = fcnchk(gradf, length(varargin));
+
+nparams = length(x);
+
+%  Check gradients
+if (gradcheck)
+  feval('gradchek', x, f, gradf, varargin{:});
+end
+
+sigma0 = 1.0e-4;
+fold = feval(f, x, varargin{:});	% Initial function value.
+fnow = fold;
+options(10) = options(10) + 1;		% Increment function evaluation counter.
+gradnew = feval(gradf, x, varargin{:});	% Initial gradient.
+gradold = gradnew;
+options(11) = options(11) + 1;		% Increment gradient evaluation counter.
+d = -gradnew;				% Initial search direction.
+success = 1;				% Force calculation of directional derivs.
+nsuccess = 0;				% nsuccess counts number of successes.
+beta = 1.0;				% Initial scale parameter.
+betamin = 1.0e-15; 			% Lower bound on scale.
+betamax = 1.0e100;			% Upper bound on scale.
+j = 1;					% j counts number of iterations.
+if nargout >= 3
+  flog(j, :) = fold;
+  if nargout == 4
+    pointlog(j, :) = x;
+  end
+end
+
+% Main optimization loop.
+while (j <= niters)
+
+  % Calculate first and second directional derivatives.
+  if (success == 1)
+    mu = d*gradnew';
+    if (mu >= 0)
+      d = - gradnew;
+      mu = d*gradnew';
+    end
+    kappa = d*d';
+    if kappa < eps
+      options(8) = fnow;
+      return
+    end
+    sigma = sigma0/sqrt(kappa);
+    xplus = x + sigma*d;
+    gplus = feval(gradf, xplus, varargin{:});
+    options(11) = options(11) + 1; 
+    theta = (d*(gplus' - gradnew'))/sigma;
+  end
+
+  % Increase effective curvature and evaluate step size alpha.
+  delta = theta + beta*kappa;
+  if (delta <= 0) 
+    delta = beta*kappa;
+    beta = beta - theta/kappa;
+  end
+  alpha = - mu/delta;
+  
+  % Calculate the comparison ratio.
+  xnew = x + alpha*d;
+  fnew = feval(f, xnew, varargin{:});
+  options(10) = options(10) + 1;
+  Delta = 2*(fnew - fold)/(alpha*mu);
+  if (Delta  >= 0)
+    success = 1;
+    nsuccess = nsuccess + 1;
+    x = xnew;
+    fnow = fnew;
+  else
+    success = 0;
+    fnow = fold;
+  end
+
+  if nargout >= 3
+    % Store relevant variables
+    flog(j) = fnow;		% Current function value
+    if nargout >= 4
+      pointlog(j,:) = x;	% Current position
+      if nargout >= 5
+	scalelog(j) = beta;	% Current scale parameter
+      end
+    end
+  end    
+  if display > 0
+    fprintf(1, 'Cycle %4d  Error %11.6f  Scale %e\n', j, fnow, beta);
+  end
+
+  if (success == 1)
+    % Test for termination
+
+    if (max(abs(alpha*d)) < options(2) & max(abs(fnew-fold)) < options(3))
+      options(8) = fnew;
+      return;
+
+    else
+      % Update variables for new position
+      fold = fnew;
+      gradold = gradnew;
+      gradnew = feval(gradf, x, varargin{:});
+      options(11) = options(11) + 1;
+      % If the gradient is zero then we are done.
+      if (gradnew*gradnew' == 0)
+	options(8) = fnew;
+	return;
+      end
+    end
+  end
+
+  % Adjust beta according to comparison ratio.
+  if (Delta < 0.25)
+    beta = min(4.0*beta, betamax);
+  end
+  if (Delta > 0.75)
+    beta = max(0.5*beta, betamin);
+  end
+
+  % Update search direction using Polak-Ribiere formula, or re-start 
+  % in direction of negative gradient after nparams steps.
+  if (nsuccess == nparams)
+    d = -gradnew;
+    nsuccess = 0;
+  else
+    if (success == 1)
+      gamma = (gradold - gradnew)*gradnew'/(mu);
+      d = gamma*d - gradnew;
+    end
+  end
+  j = j + 1;
+end
+
+% If we get here, then we haven't terminated in the given number of 
+% iterations.
+
+options(8) = fold;
+if (options(1) >= 0)
+  disp(maxitmess);
+end
+