Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/scg.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/scg.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,208 @@ +function [x, options, flog, pointlog, scalelog] = scg(f, x, options, gradf, varargin) +%SCG Scaled conjugate gradient optimization. +% +% Description +% [X, OPTIONS] = SCG(F, X, OPTIONS, GRADF) uses a scaled conjugate +% gradients algorithm to find a local minimum of the function F(X) +% whose gradient is given by GRADF(X). Here X is a row vector and F +% returns a scalar value. The point at which F has a local minimum is +% returned as X. The function value at that point is returned in +% OPTIONS(8). +% +% [X, OPTIONS, FLOG, POINTLOG, SCALELOG] = SCG(F, X, OPTIONS, GRADF) +% also returns (optionally) a log of the function values after each +% cycle in FLOG, a log of the points visited in POINTLOG, and a log of +% the scale values in the algorithm in SCALELOG. +% +% SCG(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional arguments to +% be passed to F() and GRADF(). The optional parameters have the +% following interpretations. +% +% OPTIONS(1) is set to 1 to display error values; also logs error +% values in the return argument ERRLOG, and the points visited in the +% return argument POINTSLOG. If OPTIONS(1) is set to 0, then only +% warning messages are displayed. If OPTIONS(1) is -1, then nothing is +% displayed. +% +% OPTIONS(2) is a measure of the absolute precision required for the +% value of X at the solution. If the absolute difference between the +% values of X between two successive steps is less than OPTIONS(2), +% then this condition is satisfied. +% +% OPTIONS(3) is a measure of the precision required of the objective +% function at the solution. If the absolute difference between the +% objective function values between two successive steps is less than +% OPTIONS(3), then this condition is satisfied. Both this and the +% previous condition must be satisfied for termination. +% +% OPTIONS(9) is set to 1 to check the user defined gradient function. +% +% OPTIONS(10) returns the total number of function evaluations +% (including those in any line searches). +% +% OPTIONS(11) returns the total number of gradient evaluations. +% +% OPTIONS(14) is the maximum number of iterations; default 100. +% +% See also +% CONJGRAD, QUASINEW +% + +% Copyright (c) Ian T Nabney (1996-2001) + +% Set up the options. +if length(options) < 18 + error('Options vector too short') +end + +if(options(14)) + niters = options(14); +else + niters = 100; +end + +display = options(1); +gradcheck = options(9); + +% Set up strings for evaluating function and gradient +f = fcnchk(f, length(varargin)); +gradf = fcnchk(gradf, length(varargin)); + +nparams = length(x); + +% Check gradients +if (gradcheck) + feval('gradchek', x, f, gradf, varargin{:}); +end + +sigma0 = 1.0e-4; +fold = feval(f, x, varargin{:}); % Initial function value. +fnow = fold; +options(10) = options(10) + 1; % Increment function evaluation counter. +gradnew = feval(gradf, x, varargin{:}); % Initial gradient. +gradold = gradnew; +options(11) = options(11) + 1; % Increment gradient evaluation counter. +d = -gradnew; % Initial search direction. +success = 1; % Force calculation of directional derivs. +nsuccess = 0; % nsuccess counts number of successes. +beta = 1.0; % Initial scale parameter. +betamin = 1.0e-15; % Lower bound on scale. +betamax = 1.0e100; % Upper bound on scale. +j = 1; % j counts number of iterations. +if nargout >= 3 + flog(j, :) = fold; + if nargout == 4 + pointlog(j, :) = x; + end +end + +% Main optimization loop. +while (j <= niters) + + % Calculate first and second directional derivatives. + if (success == 1) + mu = d*gradnew'; + if (mu >= 0) + d = - gradnew; + mu = d*gradnew'; + end + kappa = d*d'; + if kappa < eps + options(8) = fnow; + return + end + sigma = sigma0/sqrt(kappa); + xplus = x + sigma*d; + gplus = feval(gradf, xplus, varargin{:}); + options(11) = options(11) + 1; + theta = (d*(gplus' - gradnew'))/sigma; + end + + % Increase effective curvature and evaluate step size alpha. + delta = theta + beta*kappa; + if (delta <= 0) + delta = beta*kappa; + beta = beta - theta/kappa; + end + alpha = - mu/delta; + + % Calculate the comparison ratio. + xnew = x + alpha*d; + fnew = feval(f, xnew, varargin{:}); + options(10) = options(10) + 1; + Delta = 2*(fnew - fold)/(alpha*mu); + if (Delta >= 0) + success = 1; + nsuccess = nsuccess + 1; + x = xnew; + fnow = fnew; + else + success = 0; + fnow = fold; + end + + if nargout >= 3 + % Store relevant variables + flog(j) = fnow; % Current function value + if nargout >= 4 + pointlog(j,:) = x; % Current position + if nargout >= 5 + scalelog(j) = beta; % Current scale parameter + end + end + end + if display > 0 + fprintf(1, 'Cycle %4d Error %11.6f Scale %e\n', j, fnow, beta); + end + + if (success == 1) + % Test for termination + + if (max(abs(alpha*d)) < options(2) & max(abs(fnew-fold)) < options(3)) + options(8) = fnew; + return; + + else + % Update variables for new position + fold = fnew; + gradold = gradnew; + gradnew = feval(gradf, x, varargin{:}); + options(11) = options(11) + 1; + % If the gradient is zero then we are done. + if (gradnew*gradnew' == 0) + options(8) = fnew; + return; + end + end + end + + % Adjust beta according to comparison ratio. + if (Delta < 0.25) + beta = min(4.0*beta, betamax); + end + if (Delta > 0.75) + beta = max(0.5*beta, betamin); + end + + % Update search direction using Polak-Ribiere formula, or re-start + % in direction of negative gradient after nparams steps. + if (nsuccess == nparams) + d = -gradnew; + nsuccess = 0; + else + if (success == 1) + gamma = (gradold - gradnew)*gradnew'/(mu); + d = gamma*d - gradnew; + end + end + j = j + 1; +end + +% If we get here, then we haven't terminated in the given number of +% iterations. + +options(8) = fold; +if (options(1) >= 0) + disp(maxitmess); +end +