Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/hbayes.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/hbayes.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,49 @@ +function [h, hdata] = hbayes(net, hdata) +%HBAYES Evaluate Hessian of Bayesian error function for network. +% +% Description +% H = HBAYES(NET, HDATA) takes a network data structure NET together +% the data contribution to the Hessian for a set of inputs and targets. +% It returns the regularised Hessian using any zero mean Gaussian +% priors on the weights defined in NET. In addition, if a MASK is +% defined in NET, then the entries in H that correspond to weights with +% a 0 in the mask are removed. +% +% [H, HDATA] = HBAYES(NET, HDATA) additionally returns the data +% component of the Hessian. +% +% See also +% GBAYES, GLMHESS, MLPHESS, RBFHESS +% + +% Copyright (c) Ian T Nabney (1996-2001) + +if (isfield(net, 'mask')) + % Extract relevant entries in Hessian + nmask_rows = size(find(net.mask), 1); + hdata = reshape(hdata(logical(net.mask*(net.mask'))), ... + nmask_rows, nmask_rows); + nwts = nmask_rows; +else + nwts = net.nwts; +end +if isfield(net, 'beta') + h = net.beta*hdata; +else + h = hdata; +end + +if isfield(net, 'alpha') + if size(net.alpha) == [1 1] + h = h + net.alpha*eye(nwts); + else + if isfield(net, 'mask') + nindx_cols = size(net.index, 2); + index = reshape(net.index(logical(repmat(net.mask, ... + 1, nindx_cols))), nmask_rows, nindx_cols); + else + index = net.index; + end + h = h + diag(index*net.alpha); + end +end