Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/gpcovarf.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/gpcovarf.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,44 @@ +function covf = gpcovarf(net, x1, x2) +%GPCOVARF Calculate the covariance function for a Gaussian Process. +% +% Description +% +% COVF = GPCOVARF(NET, X1, X2) takes a Gaussian Process data structure +% NET together with two matrices X1 and X2 of input vectors, and +% computes the matrix of the covariance function values COVF. +% +% See also +% GP, GPCOVAR, GPCOVARP, GPERR, GPGRAD +% + +% Copyright (c) Ian T Nabney (1996-2001) + +errstring = consist(net, 'gp', x1); +if ~isempty(errstring); + error(errstring); +end + +if size(x1, 2) ~= size(x2, 2) + error('Number of variables in x1 and x2 must be the same'); +end + +n1 = size(x1, 1); +n2 = size(x2, 1); +beta = diag(exp(net.inweights)); + +% Compute the weighted squared distances between x1 and x2 +z = (x1.*x1)*beta*ones(net.nin, n2) - 2*x1*beta*x2' ... + + ones(n1, net.nin)*beta*(x2.*x2)'; + +switch net.covar_fn + + case 'sqexp' % Squared exponential + covf = exp(net.fpar(1) - 0.5*z); + + case 'ratquad' % Rational quadratic + nu = exp(net.fpar(2)); + covf = exp(net.fpar(1))*((ones(size(z)) + z).^(-nu)); + + otherwise + error(['Unknown covariance function ', net.covar_fn]); +end \ No newline at end of file