Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/gmmunpak.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/gmmunpak.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,54 @@ +function mix = gmmunpak(mix, p) +%GMMUNPAK Separates a vector of Gaussian mixture model parameters into its components. +% +% Description +% MIX = GMMUNPAK(MIX, P) takes a GMM data structure MIX and a single +% row vector of parameters P and returns a mixture data structure +% identical to the input MIX, except that the mixing coefficients +% PRIORS, centres CENTRES and covariances COVARS (and, for PPCA, the +% lambdas and U (PCA sub-spaces)) are all set to the corresponding +% elements of P. +% +% See also +% GMM, GMMPAK +% + +% Copyright (c) Ian T Nabney (1996-2001) + +errstring = consist(mix, 'gmm'); +if ~errstring + error(errstring); +end +if mix.nwts ~= length(p) + error('Invalid weight vector length') +end + +mark1 = mix.ncentres; +mark2 = mark1 + mix.ncentres*mix.nin; + +mix.priors = reshape(p(1:mark1), 1, mix.ncentres); +mix.centres = reshape(p(mark1 + 1:mark2), mix.ncentres, mix.nin); +switch mix.covar_type + case 'spherical' + mark3 = mix.ncentres*(2 + mix.nin); + mix.covars = reshape(p(mark2 + 1:mark3), 1, mix.ncentres); + case 'diag' + mark3 = mix.ncentres*(1 + mix.nin + mix.nin); + mix.covars = reshape(p(mark2 + 1:mark3), mix.ncentres, mix.nin); + case 'full' + mark3 = mix.ncentres*(1 + mix.nin + mix.nin*mix.nin); + mix.covars = reshape(p(mark2 + 1:mark3), mix.nin, mix.nin, ... + mix.ncentres); + case 'ppca' + mark3 = mix.ncentres*(2 + mix.nin); + mix.covars = reshape(p(mark2 + 1:mark3), 1, mix.ncentres); + % Now also extract k and eigenspaces + mark4 = mark3 + mix.ncentres*mix.ppca_dim; + mix.lambda = reshape(p(mark3 + 1:mark4), mix.ncentres, ... + mix.ppca_dim); + mix.U = reshape(p(mark4 + 1:end), mix.nin, mix.ppca_dim, ... + mix.ncentres); + otherwise + error(['Unknown covariance type ', mix.covar_type]); +end +