Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/netlab3.3/demgmm5.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/netlab3.3/demgmm5.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,147 @@ +%DEMGMM5 Demonstrate density modelling with a PPCA mixture model. +% +% Description +% The problem consists of modelling data generated by a mixture of +% three Gaussians in 2 dimensions with a mixture model using full +% covariance matrices. The priors are 0.3, 0.5 and 0.2; the centres +% are (2, 3.5), (0, 0) and (0,2); the variances are (0.16, 0.64) axis +% aligned, (0.25, 1) rotated by 30 degrees and the identity matrix. The +% first figure contains a scatter plot of the data. +% +% A mixture model with three one-dimensional PPCA components is trained +% using EM. The parameter vector is printed before training and after +% training. The parameter vector consists of priors (the column), and +% centres (given as (x, y) pairs as the next two columns). +% +% The second figure is a 3 dimensional view of the density function, +% while the third shows the axes of the 1-standard deviation ellipses +% for the three components of the mixture model together with the one +% standard deviation along the principal component of each mixture +% model component. +% +% See also +% GMM, GMMINIT, GMMEM, GMMPROB, PPCA +% + +% Copyright (c) Ian T Nabney (1996-2001) + + +ndata = 500; +data = randn(ndata, 2); +prior = [0.3 0.5 0.2]; +% Mixture model swaps clusters 1 and 3 +datap = [0.2 0.5 0.3]; +datac = [0 2; 0 0; 2 3.5]; +datacov = repmat(eye(2), [1 1 3]); +data1 = data(1:prior(1)*ndata,:); +data2 = data(prior(1)*ndata+1:(prior(2)+prior(1))*ndata, :); +data3 = data((prior(1)+prior(2))*ndata +1:ndata, :); + +% First cluster has axis aligned variance and centre (2, 3.5) +data1(:, 1) = data1(:, 1)*0.1 + 2.0; +data1(:, 2) = data1(:, 2)*0.8 + 3.5; +datacov(:, :, 3) = [0.1*0.1 0; 0 0.8*0.8]; + +% Second cluster has variance axes rotated by 30 degrees and centre (0, 0) +rotn = [cos(pi/6) -sin(pi/6); sin(pi/6) cos(pi/6)]; +data2(:,1) = data2(:, 1)*0.2; +data2 = data2*rotn; +datacov(:, :, 2) = rotn' * [0.04 0; 0 1] * rotn; + +% Third cluster is at (0,2) +data3(:, 2) = data3(:, 2)*0.1; +data3 = data3 + repmat([0 2], prior(3)*ndata, 1); + +% Put the dataset together again +data = [data1; data2; data3]; + +ndata = 100; % Number of data points. +noise = 0.2; % Standard deviation of noise distribution. +x = [0:1/(2*(ndata - 1)):0.5]'; +randn('state', 1); +rand('state', 1); +t = sin(2*pi*x) + noise*randn(ndata, 1); + +% Fit three one-dimensional PPCA models +ncentres = 3; +ppca_dim = 1; + +clc +disp('This demonstration illustrates the use of a Gaussian mixture model') +disp('with a probabilistic PCA covariance structure to approximate the') +disp('unconditional probability density of data in a two-dimensional space.') +disp('We begin by generating the data from a mixture of three Gaussians and') +disp('plotting it.') +disp(' ') +disp('The first cluster has axis aligned variance and centre (0, 2).') +disp('The variance parallel to the x-axis is significantly greater') +disp('than that parallel to the y-axis.') +disp('The second cluster has variance axes rotated by 30 degrees') +disp('and centre (0, 0). The third cluster has significant variance') +disp('parallel to the y-axis and centre (2, 3.5).') +disp(' ') +disp('Press any key to continue.') +pause + +fh1 = figure; +plot(data(:, 1), data(:, 2), 'o') +set(gca, 'Box', 'on') +axis equal +hold on + +mix = gmm(2, ncentres, 'ppca', ppca_dim); +options = foptions; +options(14) = 10; +options(1) = -1; % Switch off all warnings + +% Just use 10 iterations of k-means in initialisation +% Initialise the model parameters from the data +mix = gmminit(mix, data, options); +disp('The mixture model has three components with 1-dimensional') +disp('PPCA subspaces. The model parameters after initialisation using') +disp('the k-means algorithm are as follows') +disp(' Priors Centres') +disp([mix.priors' mix.centres]) +disp(' ') +disp('Press any key to continue') +pause + +options(1) = 1; % Prints out error values. +options(14) = 30; % Number of iterations. + +disp('We now train the model using the EM algorithm for up to 30 iterations.') +disp(' ') +disp('Press any key to continue.') +pause + +[mix, options, errlog] = gmmem(mix, data, options); +disp('The trained model has priors and centres:') +disp(' Priors Centres') +disp([mix.priors' mix.centres]) + +% Now plot the result +for i = 1:ncentres + % Plot the PC vectors + v = mix.U(:,:,i); + start=mix.centres(i,:)-sqrt(mix.lambda(i))*(v'); + endpt=mix.centres(i,:)+sqrt(mix.lambda(i))*(v'); + linex = [start(1) endpt(1)]; + liney = [start(2) endpt(2)]; + line(linex, liney, 'Color', 'k', 'LineWidth', 3) + % Plot ellipses of one standard deviation + theta = 0:0.02:2*pi; + x = sqrt(mix.lambda(i))*cos(theta); + y = sqrt(mix.covars(i))*sin(theta); + % Rotate ellipse axes + rot_matrix = [v(1) -v(2); v(2) v(1)]; + ellipse = (rot_matrix*([x; y]))'; + % Adjust centre + ellipse = ellipse + ones(length(theta), 1)*mix.centres(i,:); + plot(ellipse(:,1), ellipse(:,2), 'r-') +end + +disp(' ') +disp('Press any key to exit') +pause +close (fh1); +clear all; \ No newline at end of file