diff toolboxes/FullBNT-1.0.7/nethelp3.3/netevfwd.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/FullBNT-1.0.7/nethelp3.3/netevfwd.htm	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,52 @@
+<html>
+<head>
+<title>
+Netlab Reference Manual netevfwd
+</title>
+</head>
+<body>
+<H1> netevfwd
+</H1>
+<h2>
+Purpose
+</h2>
+Generic forward propagation with evidence for network
+
+<p><h2>
+Synopsis
+</h2>
+<PRE>
+
+[y, extra] = netevfwd(w, net, x, t, x_test)
+[y, extra, invhess] = netevfwd(w, net, x, t, x_test, invhess)
+</PRE>
+
+
+<p><h2>
+Description
+</h2>
+<CODE>[y, extra] = netevfwd(w, net, x, t, x_test)</CODE> takes a network data 
+structure 
+<CODE>net</CODE> together with the input <CODE>x</CODE> and target <CODE>t</CODE> training data
+and input test data <CODE>x_test</CODE>.
+It returns the normal forward propagation through the network <CODE>y</CODE>
+together with a matrix <CODE>extra</CODE> which consists of error bars (variance)
+for a regression problem or moderated outputs for a classification problem.
+
+<p>The optional argument (and return value) 
+<CODE>invhess</CODE> is the inverse of the network Hessian
+computed on the training data inputs and targets.  Passing it in avoids
+recomputing it, which can be a significant saving for large training sets.
+
+<p><h2>
+See Also
+</h2>
+<CODE><a href="mlpevfwd.htm">mlpevfwd</a></CODE>, <CODE><a href="rbfevfwd.htm">rbfevfwd</a></CODE>, <CODE><a href="glmevfwd.htm">glmevfwd</a></CODE>, <CODE><a href="fevbayes.htm">fevbayes</a></CODE><hr>
+<b>Pages:</b>
+<a href="index.htm">Index</a>
+<hr>
+<p>Copyright (c) Ian T Nabney (1996-9)
+
+
+</body>
+</html>
\ No newline at end of file