Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/nethelp3.3/gp.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/nethelp3.3/gp.htm Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,80 @@ +<html> +<head> +<title> +Netlab Reference Manual gp +</title> +</head> +<body> +<H1> gp +</H1> +<h2> +Purpose +</h2> +Create a Gaussian Process. + +<p><h2> +Synopsis +</h2> +<PRE> +net = gp(nin, covarfn) +net = gp(nin, covarfn, prior) +</PRE> + + +<p><h2> +Description +</h2> + +<p><CODE>net = gp(nin, covarfn)</CODE> takes the number of inputs <CODE>nin</CODE> +for a Gaussian Process model with a single output, together +with a string <CODE>covarfn</CODE> which specifies the type of the covariance function, +and returns a data structure <CODE>net</CODE>. The parameters are set to zero. + +<p>The fields in <CODE>net</CODE> are +<PRE> + type = 'gp' + nin = number of inputs + nout = number of outputs: always 1 + nwts = total number of weights and covariance function parameters + bias = logarithm of constant offset in covariance function + noise = logarithm of output noise variance + inweights = logarithm of inverse length scale for each input + covarfn = string describing the covariance function: + 'sqexp' + 'ratquad' + fpar = covariance function specific parameters (1 for squared exponential, + 2 for rational quadratic) + trin = training input data (initially empty) + trtargets = training target data (initially empty) +</PRE> + + +<p><CODE>net = gp(nin, covarfn, prior)</CODE> sets a Gaussian prior on the +parameters of the model. <CODE>prior</CODE> must contain the fields +<CODE>pr_mean</CODE> and <CODE>pr_variance</CODE>. If <CODE>pr_mean</CODE> is a scalar, +then the Gaussian is assumed to be isotropic and the additional fields +<CODE>net.pr_mean</CODE> and <CODE>pr_variance</CODE> are set. Otherwise, +the Gaussian prior has a mean +defined by a column vector of parameters <CODE>prior.pr_mean</CODE> and +covariance defined by a column vector of parameters <CODE>prior.pr_variance</CODE>. +Each element of <CODE>prmean</CODE> corresponds to a separate group of parameters, which +need not be mutually exclusive. The membership of the groups is defined +by the matrix <CODE>prior.index</CODE> in which the columns correspond to the elements of +<CODE>prmean</CODE>. Each column has one element for each weight in the matrix, +in the order defined by the function <CODE>gppak</CODE>, and each element +is 1 or 0 according to whether the parameter is a member of the +corresponding group or not. The additional field <CODE>net.index</CODE> is set +in this case. + +<p><h2> +See Also +</h2> +<CODE><a href="gppak.htm">gppak</a></CODE>, <CODE><a href="gpunpak.htm">gpunpak</a></CODE>, <CODE><a href="gpfwd.htm">gpfwd</a></CODE>, <CODE><a href="gperr.htm">gperr</a></CODE>, <CODE><a href="gpcovar.htm">gpcovar</a></CODE>, <CODE><a href="gpgrad.htm">gpgrad</a></CODE><hr> +<b>Pages:</b> +<a href="index.htm">Index</a> +<hr> +<p>Copyright (c) Ian T Nabney (1996-9) + + +</body> +</html> \ No newline at end of file