Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/nethelp3.3/glm.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/nethelp3.3/glm.htm Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,85 @@ +<html> +<head> +<title> +Netlab Reference Manual glm +</title> +</head> +<body> +<H1> glm +</H1> +<h2> +Purpose +</h2> +Create a generalized linear model. + +<p><h2> +Synopsis +</h2> +<PRE> +net = glm(nin, nout, func) +net = glm(nin, nout, func, prior) +net = glm(nin, nout, func, prior, beta) +</PRE> + + +<p><h2> +Description +</h2> + +<p><CODE>net = glm(nin, nout, func)</CODE> takes the number of inputs +and outputs for a generalized linear model, together +with a string <CODE>func</CODE> which specifies the output unit activation function, +and returns a data structure <CODE>net</CODE>. The weights are drawn from a zero mean, +isotropic Gaussian, with variance scaled by the fan-in of the +output units. This makes use of the Matlab function +<CODE>randn</CODE> and so the seed for the random weight initialization can be +set using <CODE>randn('state', s)</CODE> where <CODE>s</CODE> is the seed value. The optional +argument <CODE>alpha</CODE> sets the inverse variance for the weight +initialization. + +<p>The fields in <CODE>net</CODE> are +<PRE> + type = 'glm' + nin = number of inputs + nout = number of outputs + nwts = total number of weights and biases + actfn = string describing the output unit activation function: + 'linear' + 'logistic' + 'softmax' + w1 = first-layer weight matrix + b1 = first-layer bias vector +</PRE> + + +<p><CODE>net = glm(nin, nout, func, prior)</CODE>, in which <CODE>prior</CODE> is +a scalar, allows the field +<CODE>net.alpha</CODE> in the data structure <CODE>net</CODE> to be set, corresponding +to a zero-mean isotropic Gaussian prior with inverse variance with +value <CODE>prior</CODE>. Alternatively, <CODE>prior</CODE> can consist of a data +structure with fields <CODE>alpha</CODE> and <CODE>index</CODE>, allowing individual +Gaussian priors to be set over groups of weights in the network. Here +<CODE>alpha</CODE> is a column vector in which each element corresponds to a +separate group of weights, which need not be mutually exclusive. The +membership of the groups is defined by the matrix <CODE>index</CODE> in which +the columns correspond to the elements of <CODE>alpha</CODE>. Each column has +one element for each weight in the matrix, in the order defined by the +function <CODE>glmpak</CODE>, and each element is 1 or 0 according to whether +the weight is a member of the corresponding group or not. + +<p><CODE>net = glm(nin, nout, func, prior, beta)</CODE> also sets the +additional field <CODE>net.beta</CODE> in the data structure <CODE>net</CODE>, where +beta corresponds to the inverse noise variance. + +<p><h2> +See Also +</h2> +<CODE><a href="glmpak.htm">glmpak</a></CODE>, <CODE><a href="glmunpak.htm">glmunpak</a></CODE>, <CODE><a href="glmfwd.htm">glmfwd</a></CODE>, <CODE><a href="glmerr.htm">glmerr</a></CODE>, <CODE><a href="glmgrad.htm">glmgrad</a></CODE>, <CODE><a href="glmtrain.htm">glmtrain</a></CODE><hr> +<b>Pages:</b> +<a href="index.htm">Index</a> +<hr> +<p>Copyright (c) Ian T Nabney (1996-9) + + +</body> +</html> \ No newline at end of file