diff toolboxes/FullBNT-1.0.7/nethelp3.3/demev2.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/FullBNT-1.0.7/nethelp3.3/demev2.htm	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,50 @@
+<html>
+<head>
+<title>
+Netlab Reference Manual demev2
+</title>
+</head>
+<body>
+<H1> demev2
+</H1>
+<h2>
+Purpose
+</h2>
+Demonstrate Bayesian classification for the MLP.
+
+<p><h2>
+Synopsis
+</h2>
+<PRE>
+demev2</PRE>
+
+
+<p><h2>
+Description
+</h2>
+A synthetic two class two-dimensional dataset <CODE>x</CODE> is sampled 
+from a mixture of four Gaussians.  Each class is
+associated with two of the Gaussians so that the optimal decision
+boundary is non-linear.
+A 2-layer
+network with logistic outputs is trained by minimizing the cross-entropy
+error function with isotroipc Gaussian regularizer (one hyperparameter for
+each of the four standard weight groups), using the scaled
+conjugate gradient optimizer. The hyperparameter vectors <CODE>alpha</CODE> and
+<CODE>beta</CODE> are re-estimated using the function <CODE>evidence</CODE>. A graph 
+is plotted of the optimal, regularised, and unregularised decision
+boundaries.  A further plot of the moderated versus unmoderated contours
+is generated.
+
+<p><h2>
+See Also
+</h2>
+<CODE><a href="evidence.htm">evidence</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE>, <CODE><a href="demard.htm">demard</a></CODE>, <CODE><a href="demmlp2.htm">demmlp2</a></CODE><hr>
+<b>Pages:</b>
+<a href="index.htm">Index</a>
+<hr>
+<p>Copyright (c) Ian T Nabney (1996-9)
+
+
+</body>
+</html>
\ No newline at end of file