Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/general/Old/mk_gdl_graph.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/general/Old/mk_gdl_graph.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,86 @@ +function gdl = mk_gdl_graph(G, domains, node_sizes, kernels, varargin) +% MK_GDL_GRAPH Make a GDL (generalized distributed law) graph +% gdl = mk_gdl_graph(G, domains, node_sizes, kernels, ...) +% +% A GDL graph is like a moralized, but untriangulated, Bayes net: +% each "node" represents a domain with a corresponding kernel function. +% For details, see "The Generalized Distributive Law", Aji and McEliece, +% IEEE Trans. Info. Theory, 46(2): 325--343, 2000 +% +% G(i,j) = 1 if there is an (undirected) edge between domains i,j +% +% domains{i} is the domain of node i +% +% node_sizes(i) is the number of values node i can take on, +% or the length of node i if i is a continuous-valued vector. +% node_sizes(i) = 1 if i is a utility node. +% +% kernels is the list of kernel functions +% +% The list below gives optional arguments [default value in brackets]. +% +% equiv_class - equiv_class(i)=j means factor node i gets its params from factors{j} [1:F] +% discrete - the list of nodes which are discrete random variables [1:N] +% chance - the list of nodes which are random variables [1:N] +% decision - the list of nodes which are decision nodes [ [] ] +% utility - the list of nodes which are utility nodes [ [] ] + + +ns = node_sizes; +N = length(domains); +vars = []; +for i=1:N + vars = myunion(vars, domains{i}); +end +Nvars = length(vars); + +gdl.equiv_class = 1:length(kernels); +gdl.chance_nodes = 1:Nvars; +gdl.utility_nodes = []; +gdl.decision_nodes = []; +gdl.dnodes = 1:Nvars; + +if nargin >= 5 + args = varargin; + nargs = length(args); + for i=1:2:nargs + switch args{i}, + case 'equiv_class', bnet.equiv_class = args{i+1}; + case 'chance', bnet.chance_nodes = args{i+1}; + case 'utility', bnet.utility_nodes = args{i+1}; + case 'decision', bnet.decision_nodes = args{i+1}; + case 'discrete', bnet.dnodes = args{i+1}; + otherwise, + error(['invalid argument name ' args{i}]); + end + end +end + + +gdl.G = G; +gdl.vars = vars; +gdl.doms = domains; +gdl.node_sizes = node_sizes; +gdl.cnodes = mysetdiff(vars, gdl.dnodes); +gdl.kernels = kernels; +gdl.type = 'gdl'; + +% Compute a bit vector representation of the set of domains +% dom_bitv(i,j) = 1 iff variable j occurs in domain i +gdl.dom_bitv = zeros(N, length(vars)); +for i=1:N + gdl.dom_bitv(i, domains{i}) = 1; +end + +% compute the interesection of the domains on either side of each edge (separating set) +gdl.sepset = cell(N, N); +gdl.nbrs = cell(1,N); +for i=1:N + nbrs = neighbors(G, i); + gdl.nbrs{i} = nbrs; + for j = nbrs(:)' + gdl.sepset{i,j} = myintersect(domains{i}, domains{j}); + end +end + +