diff toolboxes/FullBNT-1.0.7/bnt/examples/static/softmax1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/FullBNT-1.0.7/bnt/examples/static/softmax1.m	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,109 @@
+% Check that softmax works with a simple classification demo.
+% Based on netlab's demglm2
+% X -> Q where X is an input node, and Q is a softmax
+
+rand('state', 0);
+randn('state', 0);
+  
+% Check inference
+
+input_dim = 2;
+num_classes = 3;
+IRLS_iter = 3;
+
+net = glm(input_dim, num_classes, 'softmax');
+
+dag = zeros(2);
+dag(1,2) = 1;
+discrete_nodes = [2];
+bnet = mk_bnet(dag, [input_dim num_classes], 'discrete', discrete_nodes, 'observed', 1);
+bnet.CPD{1} = root_CPD(bnet, 1);
+clamped = 0;
+bnet.CPD{2} = softmax_CPD(bnet, 2, net.w1, net.b1, clamped, IRLS_iter);
+
+engine = jtree_inf_engine(bnet);
+
+x = rand(1, input_dim);
+q = glmfwd(net, x);
+
+[engine, ll] = enter_evidence(engine, {x, []});
+m = marginal_nodes(engine, 2);
+assert(approxeq(m.T(:), q(:)));
+
+
+% Check learning
+% We use EM, but in fact there is no hidden data.
+% The M step will call IRLS on the softmax node.
+
+% Generate data from three classes in 2d
+input_dim = 2;
+num_classes = 3;
+
+% Fix seeds for reproducible results
+randn('state', 42);
+rand('state', 42);
+
+ndata = 10;
+% Generate mixture of three Gaussians in two dimensional space
+data = randn(ndata, input_dim);
+targets = zeros(ndata, 3);
+
+% Priors for the clusters
+prior(1) = 0.4;
+prior(2) = 0.3;
+prior(3) = 0.3;
+
+% Cluster centres
+c = [2.0, 2.0; 0.0, 0.0; 1, -1];
+
+ndata1 = prior(1)*ndata;
+ndata2 = (prior(1) + prior(2))*ndata;
+% Put first cluster at (2, 2)
+data(1:ndata1, 1) = data(1:ndata1, 1) * 0.5 + c(1,1);
+data(1:ndata1, 2) = data(1:ndata1, 2) * 0.5 + c(1,2);
+targets(1:ndata1, 1) = 1;
+
+% Leave second cluster at (0,0)
+data((ndata1 + 1):ndata2, :) = ...
+  data((ndata1 + 1):ndata2, :);
+targets((ndata1+1):ndata2, 2) = 1;
+
+data((ndata2+1):ndata, 1) = data((ndata2+1):ndata,1) *0.6 + c(3, 1);
+data((ndata2+1):ndata, 2) = data((ndata2+1):ndata,2) *0.6 + c(3, 2);
+targets((ndata2+1):ndata, 3) = 1;
+
+
+if 0
+  ndata = 1;
+  data = x;
+  targets = [1 0 0];
+end
+
+options = foptions;
+options(1) = -1; % verbose
+options(14) = IRLS_iter;
+[net2, options2] = glmtrain(net, options, data, targets);
+net2.ll = options2(8); % type 'help foptions' for details
+
+cases = cell(2, ndata);
+for l=1:ndata
+  q = find(targets(l,:)==1);
+  x = data(l,:);
+  cases{1,l} = x(:);
+  cases{2,l} = q;
+end
+
+max_iter = 2; % we have complete observability, so 1 iter is enough
+[bnet2, ll2] = learn_params_em(engine, cases, max_iter);
+
+w = get_field(bnet2.CPD{2},'weights');
+b = get_field(bnet2.CPD{2},'offset')';
+
+w
+net2.w1
+
+b
+net2.b1
+
+% assert(approxeq(net2.ll, ll2)); % glmtrain returns ll after final M step, learn_params before
+