Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/static/StructLearn/model_select2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/static/StructLearn/model_select2.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,83 @@ +% Online Bayesian model selection demo. + +% We generate data from the model A->B +% and compute the posterior prob of all 3 dags on 2 nodes: +% (1) A B, (2) A <- B , (3) A -> B +% Models 2 and 3 are Markov equivalent, and therefore indistinguishable from +% observational data alone. + +% We control the dependence of B on A by setting +% P(B|A) = 0.5 - epislon and vary epsilon +% as in Koller & Friedman book p512 + +% ground truth +N = 2; +dag = zeros(N); +A = 1; B = 2; +dag(A,B) = 1; + +ntrials = 100; +ns = 2*ones(1,N); +true_bnet = mk_bnet(dag, ns); +true_bnet.CPD{1} = tabular_CPD(true_bnet, 1, [0.5 0.5]); + +% hypothesis space +G = mk_all_dags(N); +nhyp = length(G); +hyp_bnet = cell(1, nhyp); +for h=1:nhyp + hyp_bnet{h} = mk_bnet(G{h}, ns); + for i=1:N + % We must set the CPTs to the mean of the prior for sequential log_marg_lik to be correct + % The BDeu prior is score equivalent, so models 2,3 will be indistinguishable. + % The uniform Dirichlet prior is not score equivalent... + fam = family(G{h}, i); + hyp_bnet{h}.CPD{i}= tabular_CPD(hyp_bnet{h}, i, 'prior_type', 'dirichlet', ... + 'CPT', 'unif'); + end +end + +clf +seeds = 1:3; +expt = 1; +for seedi=1:length(seeds) + seed = seeds(seedi); + rand('state', seed); + randn('state', seed); + + es = [0.05 0.1 0.15 0.2]; + for ei=1:length(es) + e = es(ei); + true_bnet.CPD{2} = tabular_CPD(true_bnet, 2, [0.5+e 0.5-e; 0.5-e 0.5+e]); + + prior = normalise(ones(1, nhyp)); + hyp_w = zeros(ntrials+1, nhyp); + hyp_w(1,:) = prior(:)'; + LL = zeros(1, nhyp); + ll = zeros(1, nhyp); + for t=1:ntrials + ev = cell2num(sample_bnet(true_bnet)); + for i=1:nhyp + ll(i) = log_marg_lik_complete(hyp_bnet{i}, ev); + hyp_bnet{i} = bayes_update_params(hyp_bnet{i}, ev); + end + prior = normalise(prior .* exp(ll)); + LL = LL + ll; + hyp_w(t+1,:) = prior; + end + + % Plot posterior model probabilities + % Red = model 1 (no arcs), blue/green = models 2/3 (1 arc) + % Blue = model 2 (2->1) + % Green = model 3 (1->2, "ground truth") + + subplot2(length(seeds), length(es), seedi, ei); + m = size(hyp_w,1); + h=plot(1:m, hyp_w(:,1), 'r-', 1:m, hyp_w(:,2), 'b-.', 1:m, hyp_w(:,3), 'g:'); + axis([0 m 0 1]) + %title('model posterior vs. time') + title(sprintf('e=%3.2f, seed=%d', e, seed)); + drawnow + expt = expt + 1; + end +end