Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/static/StructLearn/bic1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/static/StructLearn/bic1.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,79 @@ +% compare BIC and Bayesian score + +N = 4; +dag = zeros(N,N); +%C = 1; S = 2; R = 3; W = 4; % topological order +C = 4; S = 2; R = 3; W = 1; % arbitrary order +dag(C,[R S]) = 1; +dag(R,W) = 1; +dag(S,W)=1; + + +false = 1; true = 2; +ns = 2*ones(1,N); % binary nodes +bnet = mk_bnet(dag, ns); +bnet.CPD{C} = tabular_CPD(bnet, C, 'CPT', [0.5 0.5]); +bnet.CPD{R} = tabular_CPD(bnet, R, 'CPT', [0.8 0.2 0.2 0.8]); +bnet.CPD{S} = tabular_CPD(bnet, S, 'CPT', [0.5 0.9 0.5 0.1]); +bnet.CPD{W} = tabular_CPD(bnet, W, 'CPT', [1 0.1 0.1 0.01 0 0.9 0.9 0.99]); + + +seed = 0; +rand('state', seed); +randn('state', seed); +ncases = 1000; +data = cell(N, ncases); +for m=1:ncases + data(:,m) = sample_bnet(bnet); +end + +priors = [0.1 1 10]; +P = length(priors); +params = cell(1,P); +for p=1:P + params{p} = cell(1,N); + for i=1:N + %params{p}{i} = {'prior', priors(p)}; + params{p}{i} = {'prior_type', 'dirichlet', 'dirichlet_weight', priors(p)}; + end +end + +%sz = 1000:1000:10000; +sz = 10:10:100; +S = length(sz); +bic_score = zeros(S, 1); +bayes_score = zeros(S, P); +for i=1:S + bic_score(i) = score_dags(data(:,1:sz(i)), ns, {dag}, 'scoring_fn', 'bic', 'params', []); +end +diff = zeros(S,P); +for p=1:P + for i=1:S + bayes_score(i,p) = score_dags(data(:,1:sz(i)), ns, {dag}, 'params', params{p}); + end +end + +for p=1:P + for i=1:S + diff(i,p) = bayes_score(i,p)/ bic_score(i); + %diff(i,p) = abs(bayes_score(i,p) - bic_score(i)); + end +end + +if 0 +plot(sz, diff(:,1), 'g--*', sz, diff(:,2), 'b-.+', sz, diff(:,3), 'k:s'); +title('Relative BIC error vs. size of data set') +legend('BDeu 0.1', 'BDeu 1', 'Bdeu 10', 2) +end + +if 0 +plot(sz, bic_score, 'r-o', sz, bayes_score(:,1), 'g--*', sz, bayes_score(:,2), 'b-.+', sz, bayes_score(:,3), 'k:s'); +legend('bic', 'BDeu 0.01', 'BDeu 1', 'Bdeu 100') +ylabel('score') +title('score vs. size of data set') +end + +%xlabel('num. data cases') + +%previewfig(gcf, 'format', 'png', 'height', 2, 'color', 'rgb') +%exportfig(gcf, '/home/cs/murphyk/public_html/Bayes/Figures/bic.png', 'format', 'png', 'height', 2, 'color', 'rgb')