Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/ghmm1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/ghmm1.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,64 @@ +% Make an HMM with Gaussian observations +% X1 -> X2 +% | | +% v v +% Y1 Y2 + +intra = zeros(2); +intra(1,2) = 1; +inter = zeros(2); +inter(1,1) = 1; +n = 2; + +Q = 2; % num hidden states +O = 2; % size of observed vector +ns = [Q O]; +bnet = mk_dbn(intra, inter, ns, 'discrete', 1, 'observed', 2); + +prior0 = normalise(rand(Q,1)); +transmat0 = mk_stochastic(rand(Q,Q)); +mu0 = rand(O,Q); +Sigma0 = repmat(eye(O), [1 1 Q]); +bnet.CPD{1} = tabular_CPD(bnet, 1, prior0); +%% we set the cov prior to 0 to give same results as HMM toolbox +%bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', mu0, 'cov', Sigma0, 'cov_prior_weight', 0); +bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', mu0, 'cov', Sigma0); +bnet.CPD{3} = tabular_CPD(bnet, 3, transmat0); + + +T = 5; % fixed length sequences + +engine = {}; +engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); +engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet)); +engine{end+1} = hmm_inf_engine(bnet); +engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); +%engine{end+1} = frontier_inf_engine(bnet); +engine{end+1} = bk_inf_engine(bnet, 'clusters', {[1]}); +engine{end+1} = jtree_dbn_inf_engine(bnet); + + +inf_time = cmp_inference_dbn(bnet, engine, T); + +ncases = 2; +max_iter = 2; +[learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter); + +% Compare to HMM toolbox + +data = zeros(O, T, ncases); +for i=1:ncases + data(:,:,i) = cell2num(cases{i}(bnet.observed, :)); +end + +tic +[LL2, prior2, transmat2, mu2, Sigma2] = mhmm_em(data, prior0, transmat0, mu0, Sigma0, [], 'max_iter', max_iter); +t=toc; +disp(['HMM toolbox took ' num2str(t) ' seconds ']) + +e = 1; +assert(approxeq(prior2, CPD{e,1}.CPT)) +assert(approxeq(mu2, CPD{e,2}.mean)) +assert(approxeq(Sigma2, CPD{e,2}.cov)) +assert(approxeq(transmat2, CPD{e,3}.CPT)) +assert(approxeq(LL2, LL{e}))