Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/Old/scg_dbn.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/Old/scg_dbn.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,70 @@ +% to test whether scg inference engine can handl dynameic BN +% Make a linear dynamical system +% X1 -> X2 +% | | +% v v +% Y1 Y2 + +intra = zeros(2); +intra(1,2) = 1; +inter = zeros(2); +inter(1,1) = 1; +n = 2; + +X = 2; % size of hidden state +Y = 2; % size of observable state + +ns = [X Y]; +dnodes = []; +onodes = [2]; +eclass1 = [1 2]; +eclass2 = [3 2]; +bnet = mk_dbn(intra, inter, ns, dnodes, eclass1, eclass2); + +x0 = rand(X,1); +V0 = eye(X); +C0 = rand(Y,X); +R0 = eye(Y); +A0 = rand(X,X); +Q0 = eye(X); + +bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0); +%bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0, 'full', 'untied', 'clamped_mean'); +%bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0, 'full', 'untied', 'clamped_mean'); +bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0); +bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0); + + +T = 5; % fixed length sequences + +clear engine; +%engine{1} = kalman_inf_engine(bnet, onodes); +engine{1} = scg_unrolled_dbn_inf_engine(bnet, T, onodes); +engine{2} = jtree_unrolled_dbn_inf_engine(bnet, T); + +N = length(engine); + +% inference + +ev = sample_dbn(bnet, T); +evidence = cell(n,T); +evidence(onodes,:) = ev(onodes, :); + +t = 2; +query = [1 3]; +m = cell(1, N); +ll = zeros(1, N); + +engine{1} = enter_evidence(engine{1}, evidence); +[engine{2}, ll(2)] = enter_evidence(engine{2}, evidence); +m{1} = marginal_nodes(engine{1}, query); +m{2} = marginal_nodes(engine{2}, query, t); + + +% compare all engines to engine{1} +for i=2:N + assert(approxeq(m{1}.mu, m{i}.mu)); + assert(approxeq(m{1}.Sigma, m{i}.Sigma)); +% assert(approxeq(ll(1), ll(i))); +end +