Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/HHMM/Mgram/mgram2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/HHMM/Mgram/mgram2.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,200 @@ +% Like a durational HMM, except we use soft evidence on the observed nodes. +% Should give the same results as HSMM/test_mgram2. + +past = 1; +% If past=1, P(Yt|Qt=j,Dt=d) = P(y_{t-d+1:t}|j) +% If past=0, P(Yt|Qt=j,Dt=d) = P(y_{t:t+d-1}|j) - future evidence + +words = {'the', 't', 'h', 'e'}; +data = 'the'; +nwords = length(words); +word_len = zeros(1, nwords); +word_prob = normalise(ones(1,nwords)); +word_logprob = log(word_prob); +for wi=1:nwords + word_len(wi)=length(words{wi}); +end +D = max(word_len); + + +alphasize = 26*2; +data = letter2num(data); +T = length(data); + +% node numbers +W = 1; % top level state = word id +L = 2; % bottom level state = letter position within word +F = 3; +O = 4; + +ss = 4; +intra = zeros(ss,ss); +intra(W,[F L O])=1; +intra(L,[O F])=1; + +inter = zeros(ss,ss); +inter(W,W)=1; +inter(L,L)=1; +inter(F,[W L O])=1; + +% node sizes +ns = zeros(1,ss); +ns(W) = nwords; +ns(L) = D; +ns(F) = 2; +ns(O) = alphasize; +ns2 = [ns ns]; + +% Make the DBN +bnet = mk_dbn(intra, inter, ns, 'observed', O); +eclass = bnet.equiv_class; + +% uniform start distrib over words, uniform trans mat +Wstart = normalise(ones(1,nwords)); +Wtrans = mk_stochastic(ones(nwords,nwords)); +%Wtrans = ones(nwords,nwords); + +% always start in state d = length(word) for each bottom level HMM +Lstart = zeros(nwords, D); +for i=1:nwords + l = length(words{i}); + Lstart(i,l)=1; +end + +% make downcounters +RLtrans = mk_rightleft_transmat(D, 0); % 0 self loop prob +Ltrans = repmat(RLtrans, [1 1 nwords]); + +% Finish when downcoutner = 1 +Fprob = zeros(nwords, D, 2); +Fprob(:,1,2)=1; +Fprob(:,2:end,1)=1; + + +% Define CPDs for slice 1 +bnet.CPD{eclass(W,1)} = tabular_CPD(bnet, W, 'CPT', Wstart); +bnet.CPD{eclass(L,1)} = tabular_CPD(bnet, L, 'CPT', Lstart); +bnet.CPD{eclass(F,1)} = tabular_CPD(bnet, F, 'CPT', Fprob); + + +% Define CPDs for slice 2 +bnet.CPD{eclass(W,2)} = hhmmQ_CPD(bnet, W+ss, 'Fbelow', F, 'startprob', Wstart, 'transprob', Wtrans); +bnet.CPD{eclass(L,2)} = hhmmQ_CPD(bnet, L+ss, 'Fself', F, 'Qps', W+ss, 'startprob', Lstart, 'transprob', Ltrans); + + +if 0 +% To test it is generating correctly, we create an artificial +% observation process that capitalizes at the start of a new segment +% Oprob(Ft-1,Qt,Dt,Yt) +Oprob = zeros(2,nwords,D,alphasize); +Oprob(1,1,3,letter2num('t'),1)=1; +Oprob(1,1,2,letter2num('h'),1)=1; +Oprob(1,1,1,letter2num('e'),1)=1; +Oprob(2,1,3,letter2num('T'),1)=1; +Oprob(2,1,2,letter2num('H'),1)=1; +Oprob(2,1,1,letter2num('E'),1)=1; +Oprob(1,2,1,letter2num('a'),1)=1; +Oprob(2,2,1,letter2num('A'),1)=1; +Oprob(1,3,1,letter2num('b'),1)=1; +Oprob(2,3,1,letter2num('B'),1)=1; +Oprob(1,4,1,letter2num('c'),1)=1; +Oprob(2,4,1,letter2num('C'),1)=1; + +% Oprob1(Qt,Dt,Yt) +Oprob1 = zeros(nwords,D,alphasize); +Oprob1(1,3,letter2num('t'),1)=1; +Oprob1(1,2,letter2num('h'),1)=1; +Oprob1(1,1,letter2num('e'),1)=1; +Oprob1(2,1,letter2num('a'),1)=1; +Oprob1(3,1,letter2num('b'),1)=1; +Oprob1(4,1,letter2num('c'),1)=1; + +bnet.CPD{eclass(O,2)} = tabular_CPD(bnet, O+ss, 'CPT', Oprob); +bnet.CPD{eclass(O,1)} = tabular_CPD(bnet, O, 'CPT', Oprob1); + +evidence = cell(ss,T); +%evidence{W,1}=1; +sample = cell2num(sample_dbn(bnet, 'length', T, 'evidence', evidence)); +str = num2letter(sample(4,:)) +end + + +if 1 + +[log_obslik, obslik, match] = mk_mgram_obslik(lower(data), words, word_len, word_prob); +% obslik(j,t,d) +softCPDpot = cell(ss,T); +ens = ns; +ens(O)=1; +ens2 = [ens ens]; +for t=2:T + dom = [F W+ss L+ss O+ss]; + % tab(Ft-1, Q2, Dt) + tab = ones(2, nwords, D); + if past + tab(1,:,:)=1; % if haven't finished previous word, likelihood is 1 + %tab(2,:,:) = squeeze(obslik(:,t,:)); % otherwise likelihood of this segment + for d=1:min(t,D) + tab(2,:,d) = squeeze(obslik(:,t,d)); + end + else + for d=1:max(1,min(D,T+1-t)) + tab(2,:,d) = squeeze(obslik(:,t+d-1,d)); + end + end + softCPDpot{O,t} = dpot(dom, ens2(dom), tab); +end +t = 1; +dom = [W L O]; +% tab(Q2, Dt) +tab = ones(nwords, D); +if past + %tab = squeeze(obslik(:,t,:)); + tab(:,1) = squeeze(obslik(:,t,1)); +else + for d=1:min(D,T-t) + tab(:,d) = squeeze(obslik(:,t+d-1,d)); + end +end +softCPDpot{O,t} = dpot(dom, ens(dom), tab); + + +%bnet.observed = []; +% uniformative observations +%bnet.CPD{eclass(O,2)} = tabular_CPD(bnet, O+ss, 'CPT', mk_stochastic(ones(2,nwords,D,alphasize))); +%bnet.CPD{eclass(O,1)} = tabular_CPD(bnet, O, 'CPT', mk_stochastic(ones(nwords,D,alphasize))); + +engine = jtree_dbn_inf_engine(bnet); +evidence = cell(ss,T); +% we add dummy data to O to force its effective size to be 1. +% The actual values have already been incorporated into softCPDpot +evidence(O,:) = num2cell(ones(1,T)); +[engine, ll_dbn] = enter_evidence(engine, evidence, 'softCPDpot', softCPDpot); + + +%evidence(F,:) = num2cell(2*ones(1,T)); +%[engine, ll_dbn] = enter_evidence(engine, evidence); + + +gamma = zeros(nwords, T); +for t=1:T + m = marginal_nodes(engine, [W F], t); + gamma(:,t) = m.T(:,2); +end + +gamma + +xidbn = zeros(nwords, nwords); +for t=1:T-1 + m = marginal_nodes(engine, [W F W+ss], t); + xidbn = xidbn + squeeze(m.T(:,2,:)); +end + +% thee +% xidbn(1,4) = 0.9412 the->e +% (2,3)=0.0588 t->h +% (3,4)=0.0588 h-e +% (4,4)=0.0588 e-e + + +end