Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/bnt/CPDs/@hhmmQ_CPD/Old/update_ess.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/bnt/CPDs/@hhmmQ_CPD/Old/update_ess.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,141 @@ +function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv) +% UPDATE_ESS Update the Expected Sufficient Statistics of a hhmm Q node. +% function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, idden_bitv) + +% Figure out the node numbers associated with each parent +% e.g., D=4, d=3, Qps = all Qs above, so dom = [Q3(t-1) F4(t-1) F3(t-1) Q1(t) Q2(t) Q3(t)]. +% so self = Q3(t), old_self = Q3(t-1), CPD.Qps = [1 2], Qps = [Q1(t) Q2(t)] +dom = fmarginal.domain; +self = dom(end); +old_self = dom(1); +Qps = dom(length(dom)-length(CPD.Qps):end-1); + +Qsz = CPD.Qsizes(CPD.d); +Qpsz = prod(CPD.Qsizes(CPD.Qps)); + +% If some of the Q nodes are observed (which happens during supervised training) +% the counts will only be non-zero in positions +% consistent with the evidence. We put the computed marginal responsibilities +% into the appropriate slots of the big counts array. +% (Recall that observed discrete nodes only have a single effective value.) +% (A more general, but much slower, way is to call add_evidence_to_dmarginal.) +% We assume the F nodes are never observed. + +obs_self = ~hidden_bitv(self); +obs_Qps = (~isempty(Qps)) & (~any(hidden_bitv(Qps))); % we assume that all or none of the Q parents are observed + +if obs_self + self_val = evidence{self}; + oldself_val = evidence{old_self}; +end + +if obs_Qps + Qps_val = subv2ind(Qpsz, cat(1, evidence{Qps})); + if Qps_val == 0 + keyboard + end +end + +if CPD.d==1 % no Qps from above + if ~CPD.F1toQ1 % no F from self + % marg(Q1(t-1), F2(t-1), Q1(t)) + % F2(t-1) P(Q1(t)=j | Q1(t-1)=i) + % 1 delta(i,j) + % 2 transprob(i,j) + if obs_self + hor_counts = zeros(Qsz, Qsz); + hor_counts(oldself_val, self_val) = fmarginal.T(2); + else + marg = reshape(fmarginal.T, [Qsz 2 Qsz]); + hor_counts = squeeze(marg(:,2,:)); + end + else + % marg(Q1(t-1), F2(t-1), F1(t-1), Q1(t)) + % F2(t-1) F1(t-1) P(Qd(t)=j| Qd(t-1)=i) + % ------------------------------------------------------ + % 1 1 delta(i,j) + % 2 1 transprob(i,j) + % 1 2 impossible + % 2 2 startprob(j) + if obs_self + marg = myreshape(fmarginal.T, [1 2 2 1]); + hor_counts = zeros(Qsz, Qsz); + hor_counts(oldself_val, self_val) = marg(1,2,1,1); + ver_counts = zeros(Qsz, 1); + %ver_counts(self_val) = marg(1,2,2,1); + ver_counts(self_val) = marg(1,2,2,1) + marg(1,1,2,1); + else + marg = reshape(fmarginal.T, [Qsz 2 2 Qsz]); + hor_counts = squeeze(marg(:,2,1,:)); + %ver_counts = squeeze(sum(marg(:,2,2,:),1)); % sum over i + ver_counts = squeeze(sum(marg(:,2,2,:),1)) + squeeze(sum(marg(:,1,2,:),1)); % sum i,b + end + end % F1toQ1 +else % d ~= 1 + if CPD.d < CPD.D % general case + % marg(Qd(t-1), Fd+1(t-1), Fd(t-1), Qps(t), Qd(t)) + % Fd+1(t-1) Fd(t-1) P(Qd(t)=j| Qd(t-1)=i, Qps(t)=k) + % ------------------------------------------------------ + % 1 1 delta(i,j) + % 2 1 transprob(i,k,j) + % 1 2 impossible + % 2 2 startprob(k,j) + if obs_Qps & obs_self + marg = myreshape(fmarginal.T, [1 2 2 1 1]); + k = 1; + hor_counts = zeros(Qsz, Qpsz, Qsz); + hor_counts(oldself_val, Qps_val, self_val) = marg(1, 2,1, k,1); + ver_counts = zeros(Qpsz, Qsz); + %ver_counts(Qps_val, self_val) = marg(1, 2,2, k,1); + ver_counts(Qps_val, self_val) = marg(1, 2,2, k,1) + marg(1, 1,2, k,1); + elseif obs_Qps & ~obs_self + marg = myreshape(fmarginal.T, [Qsz 2 2 1 Qsz]); + k = 1; + hor_counts = zeros(Qsz, Qpsz, Qsz); + hor_counts(:, Qps_val, :) = marg(:, 2,1, k,:); + ver_counts = zeros(Qpsz, Qsz); + %ver_counts(Qps_val, :) = sum(marg(:, 2,2, k,:), 1); + ver_counts(Qps_val, :) = sum(marg(:, 2,2, k,:), 1) + sum(marg(:, 1,2, k,:), 1); + elseif ~obs_Qps & obs_self + error('not yet implemented') + else % everything is hidden + marg = reshape(fmarginal.T, [Qsz 2 2 Qpsz Qsz]); + hor_counts = squeeze(marg(:,2,1,:,:)); % i,k,j + %ver_counts = squeeze(sum(marg(:,2,2,:,:),1)); % sum over i + ver_counts = squeeze(sum(marg(:,2,2,:,:),1)) + squeeze(sum(marg(:,1,2,:,:),1)); % sum over i,b + end + else % d == D, so no F from below + % marg(QD(t-1), FD(t-1), Qps(t), QD(t)) + % FD(t-1) P(QD(t)=j | QD(t-1)=i, Qps(t)=k) + % 1 transprob(i,k,j) + % 2 startprob(k,j) + if obs_Qps & obs_self + marg = myreshape(fmarginal.T, [1 2 1 1]); + k = 1; + hor_counts = zeros(Qsz, Qpsz, Qsz); + hor_counts(oldself_val, Qps_val, self_val) = marg(1, 1, k,1); + ver_counts = zeros(Qpsz, Qsz); + ver_counts(Qps_val, self_val) = marg(1, 2, k,1); + elseif obs_Qps & ~obs_self + marg = myreshape(fmarginal.T, [Qsz 2 1 Qsz]); + k = 1; + hor_counts = zeros(Qsz, Qpsz, Qsz); + hor_counts(:, Qps_val, :) = marg(:, 1, k,:); + ver_counts = zeros(Qpsz, Qsz); + ver_counts(Qps_val, :) = sum(marg(:, 2, k, :), 1); + elseif ~obs_Qps & obs_self + error('not yet implemented') + else % everything is hidden + marg = reshape(fmarginal.T, [Qsz 2 Qpsz Qsz]); + hor_counts = squeeze(marg(:,1,:,:)); + ver_counts = squeeze(sum(marg(:,2,:,:),1)); % sum over i + end + end +end + +CPD.sub_CPD_trans = update_ess_simple(CPD.sub_CPD_trans, hor_counts); + +if ~isempty(CPD.sub_CPD_start) + CPD.sub_CPD_start = update_ess_simple(CPD.sub_CPD_start, ver_counts); +end +