Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/KPMtools/polygon_centroid.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/KPMtools/polygon_centroid.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,79 @@ +function [x0,y0] = centroid(x,y) +% CENTROID Center of mass of a polygon. +% [X0,Y0] = CENTROID(X,Y) Calculates centroid +% (center of mass) of planar polygon with vertices +% coordinates X, Y. +% Z0 = CENTROID(X+i*Y) returns Z0=X0+i*Y0 the same +% as CENTROID(X,Y). + +% Copyright (c) 1995 by Kirill K. Pankratov, +% kirill@plume.mit.edu. +% 06/01/95, 06/07/95 + +% Algorithm: +% X0 = Int{x*ds}/Int{ds}, where ds - area element +% so that Int{ds} is total area of a polygon. +% Using Green's theorem the area integral can be +% reduced to a contour integral: +% Int{x*ds} = -Int{x^2*dy}, Int{ds} = Int{x*dy} along +% the perimeter of a polygon. +% For a polygon as a sequence of line segments +% this can be reduced exactly to a sum: +% Int{x^2*dy} = Sum{ (x_{i}^2+x_{i+1}^2+x_{i}*x_{i+1})* +% (y_{i+1}-y_{i})}/3; +% Int{x*dy} = Sum{(x_{i}+x_{i+1})(y_{i+1}-y_{i})}/2. +% Similarly +% Y0 = Int{y*ds}/Int{ds}, where +% Int{y*ds} = Int{y^2*dx} = +% = Sum{ (y_{i}^2+y_{i+1}^2+y_{i}*y_{i+1})* +% (x_{i+1}-x_{i})}/3. + + % Handle input ...................... +if nargin==0, help centroid, return, end +if nargin==1 + sz = size(x); + if sz(1)==2 % Matrix 2 by n + y = x(2,:); x = x(1,:); + elseif sz(2)==2 % Matrix n by 2 + y = x(:,2); x = x(:,1); + else + y = imag(x); + x = real(x); + end +end + + % Make a polygon closed .............. +x = [x(:); x(1)]; +y = [y(:); y(1)]; + + % Check length ....................... +l = length(x); +if length(y)~=l + error(' Vectors x and y must have the same length') +end + + % X-mean: Int{x^2*dy} ................ +del = y(2:l)-y(1:l-1); +v = x(1:l-1).^2+x(2:l).^2+x(1:l-1).*x(2:l); +x0 = v'*del; + + % Y-mean: Int{y^2*dx} ................ +del = x(2:l)-x(1:l-1); +v = y(1:l-1).^2+y(2:l).^2+y(1:l-1).*y(2:l); +y0 = v'*del; + + % Calculate area: Int{y*dx} .......... +a = (y(1:l-1)+y(2:l))'*del; +tol= 2*eps; +if abs(a)<tol + disp(' Warning: area of polygon is close to 0') + a = a+sign(a)*tol+(~a)*tol; +end + % Multiplier +a = 1/3/a; + + % Divide by area ..................... +x0 = -x0*a; +y0 = y0*a; + +if nargout < 2, x0 = x0+i*y0; end