Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/KPMtools/plotcov3.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/KPMtools/plotcov3.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,109 @@ +% PLOTCOV3 - Plots a covariance ellipsoid with axes for a trivariate +% Gaussian distribution. +% +% Usage: +% [h, s] = plotcov3(mu, Sigma[, OPTIONS]); +% +% Inputs: +% mu - a 3 x 1 vector giving the mean of the distribution. +% Sigma - a 3 x 3 symmetric positive semi-definite matrix giving +% the covariance of the distribution (or the zero matrix). +% +% Options: +% 'conf' - a scalar between 0 and 1 giving the confidence +% interval (i.e., the fraction of probability mass to +% be enclosed by the ellipse); default is 0.9. +% 'num-pts' - if the value supplied is n, then (n + 1)^2 points +% to be used to plot the ellipse; default is 20. +% 'plot-opts' - a cell vector of arguments to be handed to PLOT3 +% to contol the appearance of the axes, e.g., +% {'Color', 'g', 'LineWidth', 1}; the default is {} +% 'surf-opts' - a cell vector of arguments to be handed to SURF +% to contol the appearance of the ellipsoid +% surface; a nice possibility that yields +% transparency is: {'EdgeAlpha', 0, 'FaceAlpha', +% 0.1, 'FaceColor', 'g'}; the default is {} +% +% Outputs: +% h - a vector of handles on the axis lines +% s - a handle on the ellipsoid surface object +% +% See also: PLOTCOV2 + +% Copyright (C) 2002 Mark A. Paskin +% +% This program is free software; you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation; either version 2 of the License, or +% (at your option) any later version. +% +% This program is distributed in the hope that it will be useful, but +% WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +% General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with this program; if not, write to the Free Software +% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 +% USA. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function [h, s] = plotcov3(mu, Sigma, varargin) + +if size(Sigma) ~= [3 3], error('Sigma must be a 3 by 3 matrix'); end +if length(mu) ~= 3, error('mu must be a 3 by 1 vector'); end + +[p, ... + n, ... + plot_opts, ... + surf_opts] = process_options(varargin, 'conf', 0.9, ... + 'num-pts', 20, ... + 'plot-opts', {}, ... + 'surf-opts', {}); +h = []; +holding = ishold; +if (Sigma == zeros(3, 3)) + z = mu; +else + % Compute the Mahalanobis radius of the ellipsoid that encloses + % the desired probability mass. + k = conf2mahal(p, 3); + % The axes of the covariance ellipse are given by the eigenvectors of + % the covariance matrix. Their lengths (for the ellipse with unit + % Mahalanobis radius) are given by the square roots of the + % corresponding eigenvalues. + if (issparse(Sigma)) + [V, D] = eigs(Sigma); + else + [V, D] = eig(Sigma); + end + if (any(diag(D) < 0)) + error('Invalid covariance matrix: not positive semi-definite.'); + end + % Compute the points on the surface of the ellipsoid. + t = linspace(0, 2*pi, n); + [X, Y, Z] = sphere(n); + u = [X(:)'; Y(:)'; Z(:)']; + w = (k * V * sqrt(D)) * u; + z = repmat(mu(:), [1 (n + 1)^2]) + w; + + % Plot the axes. + L = k * sqrt(diag(D)); + h = plot3([mu(1); mu(1) + L(1) * V(1, 1)], ... + [mu(2); mu(2) + L(1) * V(2, 1)], ... + [mu(3); mu(3) + L(1) * V(3, 1)], plot_opts{:}); + hold on; + h = [h; plot3([mu(1); mu(1) + L(2) * V(1, 2)], ... + [mu(2); mu(2) + L(2) * V(2, 2)], ... + [mu(3); mu(3) + L(2) * V(3, 2)], plot_opts{:})]; + h = [h; plot3([mu(1); mu(1) + L(3) * V(1, 3)], ... + [mu(2); mu(2) + L(3) * V(2, 3)], ... + [mu(3); mu(3) + L(3) * V(3, 3)], plot_opts{:})]; +end + +s = surf(reshape(z(1, :), [(n + 1) (n + 1)]), ... + reshape(z(2, :), [(n + 1) (n + 1)]), ... + reshape(z(3, :), [(n + 1) (n + 1)]), ... + surf_opts{:}); + +if (~holding) hold off; end