Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/KPMstats/mixgauss_prob.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/KPMstats/mixgauss_prob.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,133 @@ +function [B, B2] = mixgauss_prob(data, mu, Sigma, mixmat, unit_norm) +% EVAL_PDF_COND_MOG Evaluate the pdf of a conditional mixture of Gaussians +% function [B, B2] = eval_pdf_cond_mog(data, mu, Sigma, mixmat, unit_norm) +% +% Notation: Y is observation, M is mixture component, and both may be conditioned on Q. +% If Q does not exist, ignore references to Q=j below. +% Alternatively, you may ignore M if this is a conditional Gaussian. +% +% INPUTS: +% data(:,t) = t'th observation vector +% +% mu(:,k) = E[Y(t) | M(t)=k] +% or mu(:,j,k) = E[Y(t) | Q(t)=j, M(t)=k] +% +% Sigma(:,:,j,k) = Cov[Y(t) | Q(t)=j, M(t)=k] +% or there are various faster, special cases: +% Sigma() - scalar, spherical covariance independent of M,Q. +% Sigma(:,:) diag or full, tied params independent of M,Q. +% Sigma(:,:,j) tied params independent of M. +% +% mixmat(k) = Pr(M(t)=k) = prior +% or mixmat(j,k) = Pr(M(t)=k | Q(t)=j) +% Not needed if M is not defined. +% +% unit_norm - optional; if 1, means data(:,i) AND mu(:,i) each have unit norm (slightly faster) +% +% OUTPUT: +% B(t) = Pr(y(t)) +% or +% B(i,t) = Pr(y(t) | Q(t)=i) +% B2(i,k,t) = Pr(y(t) | Q(t)=i, M(t)=k) +% +% If the number of mixture components differs depending on Q, just set the trailing +% entries of mixmat to 0, e.g., 2 components if Q=1, 3 components if Q=2, +% then set mixmat(1,3)=0. In this case, B2(1,3,:)=1.0. + + + + +if isvectorBNT(mu) & size(mu,2)==1 + d = length(mu); + Q = 1; M = 1; +elseif ndims(mu)==2 + [d Q] = size(mu); + M = 1; +else + [d Q M] = size(mu); +end +[d T] = size(data); + +if nargin < 4, mixmat = ones(Q,1); end +if nargin < 5, unit_norm = 0; end + +%B2 = zeros(Q,M,T); % ATB: not needed allways +%B = zeros(Q,T); + +if isscalarBNT(Sigma) + mu = reshape(mu, [d Q*M]); + if unit_norm % (p-q)'(p-q) = p'p + q'q - 2p'q = n+m -2p'q since p(:,i)'p(:,i)=1 + %avoid an expensive repmat + disp('unit norm') + %tic; D = 2 -2*(data'*mu)'; toc + D = 2 - 2*(mu'*data); + tic; D2 = sqdist(data, mu)'; toc + assert(approxeq(D,D2)) + else + D = sqdist(data, mu)'; + end + clear mu data % ATB: clear big old data + % D(qm,t) = sq dist between data(:,t) and mu(:,qm) + logB2 = -(d/2)*log(2*pi*Sigma) - (1/(2*Sigma))*D; % det(sigma*I) = sigma^d + B2 = reshape(exp(logB2), [Q M T]); + clear logB2 % ATB: clear big old data + +elseif ndims(Sigma)==2 % tied full + mu = reshape(mu, [d Q*M]); + D = sqdist(data, mu, inv(Sigma))'; + % D(qm,t) = sq dist between data(:,t) and mu(:,qm) + logB2 = -(d/2)*log(2*pi) - 0.5*logdet(Sigma) - 0.5*D; + %denom = sqrt(det(2*pi*Sigma)); + %numer = exp(-0.5 * D); + %B2 = numer/denom; + B2 = reshape(exp(logB2), [Q M T]); + +elseif ndims(Sigma)==3 % tied across M + B2 = zeros(Q,M,T); + for j=1:Q + % D(m,t) = sq dist between data(:,t) and mu(:,j,m) + if isposdef(Sigma(:,:,j)) + D = sqdist(data, permute(mu(:,j,:), [1 3 2]), inv(Sigma(:,:,j)))'; + logB2 = -(d/2)*log(2*pi) - 0.5*logdet(Sigma(:,:,j)) - 0.5*D; + B2(j,:,:) = exp(logB2); + else + error(sprintf('mixgauss_prob: Sigma(:,:,q=%d) not psd\n', j)); + end + end + +else % general case + B2 = zeros(Q,M,T); + for j=1:Q + for k=1:M + %if mixmat(j,k) > 0 + B2(j,k,:) = gaussian_prob(data, mu(:,j,k), Sigma(:,:,j,k)); + %end + end + end +end + +% B(j,t) = sum_k B2(j,k,t) * Pr(M(t)=k | Q(t)=j) + +% The repmat is actually slower than the for-loop, because it uses too much memory +% (this is true even for small T). + +%B = squeeze(sum(B2 .* repmat(mixmat, [1 1 T]), 2)); +%B = reshape(B, [Q T]); % undo effect of squeeze in case Q = 1 + +B = zeros(Q,T); +if Q < T + for q=1:Q + %B(q,:) = mixmat(q,:) * squeeze(B2(q,:,:)); % squeeze chnages order if M=1 + B(q,:) = mixmat(q,:) * permute(B2(q,:,:), [2 3 1]); % vector * matrix sums over m + end +else + for t=1:T + B(:,t) = sum(mixmat .* B2(:,:,t), 2); % sum over m + end +end +%t=toc;fprintf('%5.3f\n', t) + +%tic +%A = squeeze(sum(B2 .* repmat(mixmat, [1 1 T]), 2)); +%t=toc;fprintf('%5.3f\n', t) +%assert(approxeq(A,B)) % may be false because of round off error