Mercurial > hg > camir-aes2014
diff toolboxes/FullBNT-1.0.7/KPMstats/gaussian_prob.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/FullBNT-1.0.7/KPMstats/gaussian_prob.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,28 @@ +function p = gaussian_prob(x, m, C, use_log) +% GAUSSIAN_PROB Evaluate a multivariate Gaussian density. +% p = gaussian_prob(X, m, C) +% p(i) = N(X(:,i), m, C) where C = covariance matrix and each COLUMN of x is a datavector + +% p = gaussian_prob(X, m, C, 1) returns log N(X(:,i), m, C) (to prevents underflow). +% +% If X has size dxN, then p has size Nx1, where N = number of examples + +if nargin < 4, use_log = 0; end + +if length(m)==1 % scalar + x = x(:)'; +end +[d N] = size(x); +%assert(length(m)==d); % slow +m = m(:); +M = m*ones(1,N); % replicate the mean across columns +denom = (2*pi)^(d/2)*sqrt(abs(det(C))); +mahal = sum(((x-M)'*inv(C)).*(x-M)',2); % Chris Bregler's trick +if any(mahal<0) + warning('mahal < 0 => C is not psd') +end +if use_log + p = -0.5*mahal - log(denom); +else + p = exp(-0.5*mahal) / (denom+eps); +end