Mercurial > hg > camir-aes2014
diff toolboxes/distance_learning/mlr/separationOracle/separationOraclePrecAtK.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/toolboxes/distance_learning/mlr/separationOracle/separationOraclePrecAtK.m Tue Feb 10 15:05:51 2015 +0000 @@ -0,0 +1,95 @@ +function [Y, Loss] = separationOraclePrecAtK(q, D, pos, neg, k) +% +% [Y,Loss] = separationOraclePrecAtK(q, D, pos, neg, k) +% +% q = index of the query point +% D = the current distance matrix +% pos = indices of relevant results for q +% neg = indices of irrelevant results for q +% k = length of the list to consider +% +% Y is a permutation 1:n corresponding to the maximally +% violated constraint +% +% Loss is the loss for Y, in this case, 1-Prec@k(Y) + + + % First, sort the documents in descending order of W'Phi(q,x) + % Phi = - (X(q) - X(x)) * (X(q) - X(x))' + + % Sort the positive documents + ScorePos = - D(pos,q); + [Vpos, Ipos] = sort(full(ScorePos'), 'descend'); + Ipos = pos(Ipos); + + % Sort the negative documents + ScoreNeg = -D(neg,q); + [Vneg, Ineg] = sort(full(ScoreNeg'), 'descend'); + Ineg = neg(Ineg); + + % Now, solve the DP for the interleaving + + numPos = length(pos); + numNeg = length(neg); + n = numPos + numNeg; + + cVpos = cumsum(Vpos); + cVneg = cumsum(Vneg); + + + % If we don't have enough positive (or negative) examples, scale k down + k = min([k, numPos, numNeg]); + + % Algorithm: + % For each precision score in 0, 1/k, 2/k, ... 1 + % Calculate maximum discriminant score for that precision level + Precision = (0:(1/k):1)'; + Discriminant = zeros(k+1, 1); + NegsBefore = zeros(numPos, k+1); + + % For 0 precision, all positives go after the first k negatives + + NegsBefore(:,1) = k + binarysearch(Vpos, Vneg(k+1:end)); + + Discriminant(1) = Vpos * (numNeg - 2 * NegsBefore(:,1)) + numPos * cVneg(end) ... + - 2 * sum(cVneg(NegsBefore((NegsBefore(:,1) > 0),1))); + + + + % For precision (a-1)/k, swap the (a-1)'th positive doc + % into the top (k-a) negative docs + + for a = 2:(k+1) + NegsBefore(:,a) = NegsBefore(:,a-1); + + % We have a-1 positives, and k - (a-1) negatives + NegsBefore(a-1, a) = binarysearch(Vpos(a-1), Vneg(1:(k-a+1))); + + % There were NegsBefore(a-1,a-1) negatives before (a-1) + % Now there are NegsBefore(a,a-1) + Discriminant(a) = Discriminant(a-1) ... + + 2 * (NegsBefore(a-1,a-1) - NegsBefore(a-1,a)) * Vpos(a-1); + + if NegsBefore(a-1,a-1) > 0 + Discriminant(a) = Discriminant(a) + 2 * cVneg(NegsBefore(a-1,a-1)); + end + if NegsBefore(a-1,a) > 0 + Discriminant(a) = Discriminant(a) - 2 * cVneg(NegsBefore(a-1,a)); + end + end + + % Normalize discriminant scores + Discriminant = Discriminant / (numPos * numNeg); + [s, x] = max(Discriminant - Precision); + + % Now we know that there are x-1 relevant docs in the max ranking + % Construct Y from NegsBefore(x,:) + + Y = nan * ones(n,1); + Y((1:numPos)' + NegsBefore(:,x)) = Ipos; + Y(isnan(Y)) = Ineg; + + % Compute loss for this list + Loss = 1 - Precision(x); +end +