diff toolboxes/MIRtoolbox1.3.2/somtoolbox/som_pieplane.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/toolboxes/MIRtoolbox1.3.2/somtoolbox/som_pieplane.m	Tue Feb 10 15:05:51 2015 +0000
@@ -0,0 +1,325 @@
+function h=som_pieplane(varargin)
+
+%SOM_PIEPLANE Visualize the map prototype vectors as pie charts
+%
+% h=som_pieplane(lattice, msize, data, [color], [s], [pos])
+% h=som_pieplane(topol, data, [color], [s], [pos])
+%
+%  som_pieplane('hexa',[5 5], rand(25,4), jet(4), rand(25,1)) 
+%  som_pieplane(sM, sM.codebook);
+%
+% Input and output arguments ([]'s are optional):
+%  lattice   (string) grid 'hexa' or 'rect'
+%  msize     (vector) size 1x2, defines the grid, M=msize(1)*msize(2)
+%            (matrix) size Mx2, gives explicit coordinates for each node: in 
+%             this case the lattice does not matter.
+%  topol     (struct) map or topology struct
+%  data      (matrix) size Mxd, Mth row is the data for Mth pie. The 
+%             values will be normalized to have unit sum in each row.
+%  [color]   (matrix) size dx3, RGB triples. The first row is the
+%             color of the first slice in each pie etc. Default is hsv(d).
+%            (string) ColorSpec or 'none' gives the same color for each slice.
+%  [s]       (matrix) size Mx1,  gives an individual size scaling for each node. 
+%            (scalar) gives the same size for each node. Default is 0.8. 
+%  [pos]     (vectors) a 1x2 vector that determines position for the
+%              origin, i.e. upper left corner. Default is no translation.
+%
+%  h         (scalar) the object handle to the PATCH object
+%
+% The data will be linearly scaled so that its sum is 1 in each unit.
+% Negative values are invalid. Axis are set as in som_cplane.
+%
+% For more help, try 'type som_pieplane' or check out online documentation.
+% See also SOM_CPLANE, SOM_PLOTPLANE, SOM_BARPLANE
+
+%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%
+% som_pieplane
+%
+% PURPOSE
+% 
+% Visualizes the map prototype vectors as pie charts.
+%
+% SYNTAX
+%
+%  h = som_pieplane(topol, data)
+%  h = som_pieplane(lattice, msize, data)
+%  h = som_pieplane(..., color)
+%  h = som_pieplane(..., color, s)
+%  h = som_pieplane(..., color, s, pos)
+%
+% DESCRIPTION
+%
+%  Visualizes the map prototype vectors as pie charts.
+%
+% KNOWN BUGS
+%
+% It is not possible to specify explicit coordinates for map
+% consisting of just one unit as then the msize is interpreted as
+% map size.
+%
+%  FEATURES
+% 
+%  - negative values in data cause an error
+%
+%  - the colors are fixed: changing colormap in the figure (see help
+%    colormap) will not affect the coloring of the slices.
+%
+%  - if input variable s has size Nxd it gives each slice an individual
+%    scaling factor. This may be used to create a glyph where
+%    the radius of the slice, not the angle, shows the variable
+%    try, e.g., som_pieplane('rect',[5 4],ones(20,4),'w',rand(20,4));
+%
+% REQUIRED INPUT ARGUMENTS
+% 
+% lattice  The basic shape of the map units 
+%         
+%    (string) 'hexa' or 'rect' positions the pies according to hexagonal or 
+%             rectangular map lattice.
+%
+% msize    The size of the map grid     
+%
+%    (vector) [n1 n2] vector defines the map size (height n1 units,
+%             width n2 units, total M=n1xn2 units). The units will 
+%             be placed to their topological locations to form a
+%             uniform hexagonal or rectangular grid.
+%    (matrix) Mx2 matrix defines arbitary coordinates for the M units. In 
+%             this case the argument 'lattice' has no effect.
+%
+% topol    Topology of the map grid
+%
+%   (struct) map or topology struct from which the topology is taken
+%
+% data     The data to be visualized
+%
+%    (matrix) Mxd matrix of data vectors. Negative values are invalid.
+%
+% OPTIONAL INPUT ARGUMENTS
+%
+% If value is unspecified or empty ([] or ''), the default values
+% are used for optional input arguments.
+%
+% s       The size scaling factors for the units
+%
+%    (scalar) gives each unit the same size scaling: 
+%             0   unit disappears (edges can be seen as a dot)
+%             ... default size is 0.8
+%             >1  unit overlaps others          
+%    (matrix) Mx1 double: each unit gets individual size scaling 
+%
+% color   The color of the slices in each pie
+%
+%    (string) ColorSpec or 'none' gives the same color for each slice
+%    (matrix) dx3 matrix assigns an RGB color determined by the dth row of
+%             the matrix to the dth slice (variable) in each pie plot
+%
+% pos    Position of origin       
+% 
+%    (vector) size 1x2: this is meant for drawing the plane in arbitary 
+%             location in a figure. Note the operation: if this argument is
+%             given, the axis limits setting part in the routine is skipped and 
+%             the limits setting will be left to be done by
+%             MATLAB's defaults. Default is no translation.
+%
+% OUTPUT ARGUMENTS
+%
+%  h (scalar)  Handle to the created patch object.
+%
+% OBJECT TAGS     
+%
+% One object handle is returned: field Tag is set to 'planePie'       
+% 
+% EXAMPLES
+%
+% %%% Create the data and make a map 
+%    
+% data=rand(100,5); map=som_make(data);
+% 
+% %%% Create a 'jet' colormap that has as many rows as the data has variables
+%    
+% colors=jet(5);
+% 
+% %%% Draw pies
+%    
+% som_pieplane(map, map.codebook, colors);
+% 
+% %%% Calculate the hits of data on the map and normalize them between [0,1]
+%  
+% hit=som_hits(map,data); hit=hit./max(max(hit));
+% 
+% %%% Draw the pies so that their size tells the hit count
+%
+% som_pieplane(map, map.codebook, colors, hit);
+% 
+% %%% Try this! (see section FEATURES) 
+%
+% som_pieplane('rect',[5 4],ones(20,4),'w',rand(20,4));
+%
+% SEE ALSO
+%
+% som_cplane     Visualize a 2D component plane, u-matrix or color plane
+% som_barplane   Visualize the map prototype vectors as bar diagrams
+% som_plotplane  Visualize the map prototype vectors as line graphs
+
+% Copyright (c) 1999-2000 by the SOM toolbox programming team.
+% http://www.cis.hut.fi/projects/somtoolbox/             
+
+% Version 2.0beta Johan 140799 juuso 310300 070600
+
+%%% Check & Init arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+[nargin, lattice, msize, data, color, s, pos] = vis_planeGetArgs(varargin{:});
+error(nargchk(3, 6, nargin));  % check no. of input args is correct
+
+% check pos
+
+if nargin < 6 | isempty(pos)
+  pos=NaN;                            % default value for pos (no translation) 
+elseif ~vis_valuetype(pos,{'1x2'})
+  error('Position of origin has to be given as an 1x2 vector');
+end
+
+% check msize
+
+if ~vis_valuetype(msize,{'1x2','nx2'}),
+  error('msize has to be 1x2 grid size vector or a Nx2 coordinate matrix.');
+end
+
+% check data
+
+if ~isnumeric(data),
+  error('Data matrix must be numeric.');
+elseif length(size((data)))>2
+  error('Data matrix has too many dimensions!');
+else
+  d=size(data,2);
+  N=size(data,1);
+end
+
+if any(data(:)<0)
+  error('Negative data values not allowed in pie plots!');
+end
+
+% Check lattice
+if ~ischar(lattice) | ~any(strcmp(lattice,{'hexa','rect'})),
+  error('Invalid lattice.');
+end
+
+%% Calculate patch coordinates for slices
+
+for i=1:N,                            
+  [nx,ny]=vis_piepatch(data(i,:));    
+  piesx(:,(1+(i-1)*d):(i*d))=nx;
+  piesy(:,(1+(i-1)*d):(i*d))=ny;
+end
+l=size(piesx,1);
+
+if size(msize,1) == 1,
+  if prod(msize) ~= N 
+    error('Data matrix has wrong size.');
+  else
+    coord=som_vis_coords(lattice, msize);
+  end
+else
+  if N ~= size(msize,1),
+    error('Data matrix has wrong size.');
+  end
+  coord=msize; 
+  % This turns the axis tightening off,
+  % as now we don't now the limits (no fixed grid)
+  if isnan(pos); pos=[0 0]; end
+end
+x=reshape(repmat(coord(:,1),1,l*d)',l,d*N);
+y=reshape(repmat(coord(:,2),1,l*d)',l,d*N);
+
+% Check size
+
+if nargin < 5 | isempty(s),  
+  s=0.8;                              % default value for scaling
+elseif ~vis_valuetype(s, {'1x1', [N 1], [N d]}),
+  error('Size matrix does not match with the data matrix.');
+elseif size(s) == [N 1],
+  s=reshape(repmat(s,1,l*d)',l,d*N);
+elseif all(size(s) ~= [1 1]),
+  s=reshape(repmat(reshape(s',d*N,1),1,l)',l,d*N);
+end
+
+% Check color
+% C_FLAG is a flag for color 'none' 
+
+if nargin < 4 | isempty(color)
+  color=hsv(d); C_FLAG=0;       % default n hsv colors
+end
+
+if ~(vis_valuetype(color, {[d 3], 'nx3rgb'},'all')) & ...
+      ~vis_valuetype(color,{'colorstyle','1x3rgb'}), 
+  error('The color matrix has wrong size or contains invalid values.');
+elseif ischar(color) & strcmp(color,'none'), 
+  C_FLAG=1;        % check for color 'none'
+  color='w';    
+else
+  C_FLAG=0;        % valid color string or colormap
+end
+
+%% Action %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% Size zero would cause division by zero. eps is as good (node disappears)
+% The edge may be visible, though. (NaN causes some other problems)
+
+s(s==0)=eps;                    
+
+%% 1. Scaling
+x=(x./s+piesx).*s; y=(y./s+piesy).*s;      
+
+%% 2. Translation  
+if ~isnan(pos)
+  x=x+pos(1);y=y+pos(2);               
+end
+
+%% 3. Rearrange dx3 color matrix
+
+if ~isstr(color) & size(color,1)~=1,
+  color=reshape(repmat(color,N,1),[1 N*d 3]);
+end
+
+%% Set axes properties  
+ax=newplot;                            % get current axis
+vis_PlaneAxisProperties(ax,lattice, msize, pos);                         
+
+%% Draw the plane! 
+
+h_=patch(x,y,color);
+
+if C_FLAG
+  set(h_,'FaceColor','none');
+end
+
+set(h_,'Tag','planePie');              % tag the object 
+
+%%% Build output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+if nargout>0, h=h_; end                % Set h only if 
+                                       % there really is output
+%%% Subfunctions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+function [x,y]=vis_piepatch(v)
+
+% Do a pie (see e.g. the MathWorks function PIE). 
+% Origin is at (0,0) and the radius is .5.
+
+N=25;
+
+if sum(v)==0, v_is_zero = 1; v(1) = 1; else v_is_zero = 0; end
+
+v(v==0) = eps; % Matlab 5.2 version of linspace doesn't work otherwise
+
+phi=[0 2*pi*cumsum(v./sum(v))];
+
+for i=2:length(phi),
+  [xi,yi]=pol2cart(linspace(phi(i-1),phi(i),N),0.5);
+  x(:,i-1)=[0 xi 0]';
+  y(:,i-1)=[0 yi 0]';
+end
+
+if v_is_zero, x = x*0; y = y*0; end
+